Department of Translational Imaging, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Room R8-218, Houston, TX 77030, USA.
Nanomedicine (Lond). 2013 Mar;8(3):343-57. doi: 10.2217/nnm.12.124. Epub 2012 Dec 2.
To predict the deposition of nanoparticles in a patient-specific arterial tree as a function of the vascular architecture, flow conditions, receptor surface density and nanoparticle properties.
MATERIALS & METHODS: The patient-specific vascular geometry is reconstructed from computed tomography angiography images. The isogeometric analysis framework integrated with a special boundary condition for the firm wall adhesion of nanoparticles is implemented. A parallel plate flow chamber system is used to validate the computational model in vitro.
Particle adhesion is dramatically affected by changes in patient-specific attributes, such as branching angle and receptor density. The adhesion pattern correlates well with the spatial and temporal distribution of the wall shear rates. For the case considered, the larger (2.0 µm) particles adhere two-times more in the lower branches of the arterial tree, whereas the smaller (0.5 µm) particles deposit more in the upper branches.
Our computational framework in conjunction with patient-specific attributes can be used to rationally select nanoparticle properties to personalize, and thus optimize, therapeutic interventions.
根据血管结构、流动条件、受体表面密度和纳米颗粒特性,预测纳米颗粒在特定患者的动脉树中的沉积。
从计算机断层血管造影图像重建特定患者的血管几何形状。实现了与纳米颗粒牢固壁附着的特殊边界条件集成的等几何分析框架。使用平行板流动室系统在体外验证计算模型。
颗粒附着受患者特定属性(如分支角和受体密度)变化的显著影响。附着模式与壁剪切率的时空分布密切相关。对于所考虑的情况,较大(2.0 µm)的颗粒在动脉树的较低分支中附着的次数多两倍,而较小(0.5 µm)的颗粒在较高分支中沉积的次数多。
我们的计算框架结合患者特定属性可用于合理选择纳米颗粒特性,从而实现治疗干预的个性化和优化。