Suppr超能文献

基于磁共振成像的外周动脉疾病患者血流与纳米药物沉积的计算建模

Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease.

作者信息

Hossain Shaolie S, Zhang Yongjie, Fu Xiaoyi, Brunner Gerd, Singh Jaykrishna, Hughes Thomas J R, Shah Dipan, Decuzzi Paolo

机构信息

Department of Translational Imaging, Houston Methodist Hospital Research Institute, Houston, TX, USA Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX, USA

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0001.

Abstract

Peripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient. The local geometry of the blood vessel and the haemodynamic conditions are derived from magnetic resonance imaging (MRI), performed at baseline and at 24 months post intervention. A dramatic improvement in blood flow dynamics is observed post intervention. A 500% increase in peak flow rate is measured in vivo as a consequence of luminal enlargement. Furthermore, blood flow simulations reveal a 32% drop in the mean oscillatory shear index, indicating reduced disturbed flow post intervention. The same patient information (vascular geometry and blood flow) is used to predict in silico in a simulation of the vascular deposition of systemically injected nanomedicines. NPs, targeted to inflammatory vascular molecules including VCAM-1, E-selectin and ICAM-1, are predicted to preferentially accumulate near the stenosis in the baseline configuration, with VCAM-1 providing the highest accumulation (approx. 1.33 and 1.50 times higher concentration than that of ICAM-1 and E-selectin, respectively). Such selective deposition of NPs within the stenosis could be effectively used for the detection and treatment of plaques forming in the SFA. The presented MRI-based computational protocol can be used to analyse data from clinical trials to explore possible correlations between haemodynamics and disease progression in PAD patients, and potentially predict disease occurrence as well as the outcome of an intervention.

摘要

外周动脉疾病(PAD)通常归因于脂蛋白和循环单核细胞在血管壁中的渐进性血管内蓄积,导致动脉粥样硬化斑块的形成。已知这受局部血管几何形状、血流动力学和生物物理条件的调节。在此,提出了一种等几何分析框架,用于分析循环纳米颗粒(NP)在一名PAD患者股浅动脉(SFA)中的血流和血管沉积情况。血管的局部几何形状和血流动力学条件源自于在基线和干预后24个月进行的磁共振成像(MRI)。干预后观察到血流动力学有显著改善。由于管腔扩大,体内测量的峰值流速增加了500%。此外,血流模拟显示平均振荡剪切指数下降了32%,表明干预后紊乱血流减少。相同的患者信息(血管几何形状和血流)用于在计算机模拟中预测全身注射纳米药物的血管沉积情况。针对包括血管细胞黏附分子-1(VCAM-1)、E-选择素和细胞间黏附分子-1(ICAM-1)等炎症血管分子的纳米颗粒,预计在基线配置下会优先在狭窄部位附近蓄积,其中VCAM-1的蓄积量最高(分别比ICAM-1和E-选择素的浓度高约1.33倍和1.50倍)。纳米颗粒在狭窄部位的这种选择性沉积可有效用于检测和治疗SFA中形成的斑块。所提出的基于MRI的计算方案可用于分析临床试验数据,以探索PAD患者血流动力学与疾病进展之间的可能相关性,并潜在地预测疾病的发生以及干预结果。

相似文献

2
Quantification of blood flow velocity in stenosed arteries by the use of finite elements: an observer-independent noninvasive method.
Magn Reson Imaging. 2008 Oct;26(8):1152-9. doi: 10.1016/j.mri.2008.01.013. Epub 2008 Aug 6.
3
Reconstruction of blood flow patterns in human arteries.
Proc Inst Mech Eng H. 1999;213(5):411-21. doi: 10.1243/0954411991535022.
6
Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree.
Biomech Model Mechanobiol. 2014 Jun;13(3):585-97. doi: 10.1007/s10237-013-0520-1. Epub 2013 Aug 14.
7
Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.
PLoS One. 2015 Apr 21;10(4):e0124575. doi: 10.1371/journal.pone.0124575. eCollection 2015.
9
Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
Magn Reson Med. 2017 Jun;77(6):2310-2319. doi: 10.1002/mrm.26308. Epub 2016 Jun 28.
10
Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
Phys Med Biol. 2007 Oct 21;52(20):6215-28. doi: 10.1088/0031-9155/52/20/009. Epub 2007 Oct 1.

引用本文的文献

1
A Novel Method for Improving the Accuracy of MR-derived Patient-specific Vascular Models using X-ray Angiography.
Eng Comput. 2022 Oct;38(5):3879-3891. doi: 10.1007/s00366-022-01685-8. Epub 2022 Jun 27.
2
A parametric study of the effect of 3D plaque shape on local hemodynamics and implications for plaque instability.
Biomech Model Mechanobiol. 2024 Aug;23(4):1209-1227. doi: 10.1007/s10237-024-01834-6. Epub 2024 Mar 26.
3
Image-guided subject-specific modeling of glymphatic transport and amyloid deposition.
Comput Methods Appl Mech Eng. 2023 Dec 15;417(Pt B). doi: 10.1016/j.cma.2023.116449. Epub 2023 Sep 27.
4
Characteristics and evaluation of atherosclerotic plaques: an overview of state-of-the-art techniques.
Front Neurol. 2023 Oct 12;14:1159288. doi: 10.3389/fneur.2023.1159288. eCollection 2023.
5
Magnetic Resonance Imaging-Derived Microvascular Perfusion Modeling to Assess Peripheral Artery Disease.
J Am Heart Assoc. 2023 Feb 7;12(3):e027649. doi: 10.1161/JAHA.122.027649. Epub 2023 Jan 23.
7
Image-based patient-specific flow simulations are consistent with stroke in pediatric cerebrovascular disease.
Biomech Model Mechanobiol. 2021 Dec;20(6):2071-2084. doi: 10.1007/s10237-021-01495-9. Epub 2021 Jul 20.
8
Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves.
Comput Methods Appl Mech Eng. 2021 Oct 1;384. doi: 10.1016/j.cma.2021.113960. Epub 2021 Jun 17.
9
The Therapeutic Potential of Nanoparticles to Reduce Inflammation in Atherosclerosis.
Biomolecules. 2019 Aug 26;9(9):416. doi: 10.3390/biom9090416.
10
Magnetic resonance imaging based modeling of microvascular perfusion in patients with peripheral artery disease.
J Biomech. 2019 Aug 27;93:147-158. doi: 10.1016/j.jbiomech.2019.06.025. Epub 2019 Jul 8.

本文引用的文献

1
USNCTAM perspectives on mechanics in medicine.
J R Soc Interface. 2014 Aug 6;11(97):20140301. doi: 10.1098/rsif.2014.0301.
2
The Effect of Lipid Modification on Peripheral Artery Disease after Endovascular Intervention Trial (ELIMIT).
Atherosclerosis. 2013 Dec;231(2):371-7. doi: 10.1016/j.atherosclerosis.2013.09.034. Epub 2013 Oct 16.
3
Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree.
Biomech Model Mechanobiol. 2014 Jun;13(3):585-97. doi: 10.1007/s10237-013-0520-1. Epub 2013 Aug 14.
4
Accurate determination of patient-specific boundary conditions in computational vascular hemodynamics using 3D cine phase-contrast MRI.
Int J Numer Method Biomed Eng. 2013 Oct;29(10):1089-103. doi: 10.1002/cnm.2562. Epub 2013 Jun 4.
5
Computational fluid dynamic simulations of image-based stented coronary bifurcation models.
J R Soc Interface. 2013 May 15;10(84):20130193. doi: 10.1098/rsif.2013.0193. Print 2013 Jul 6.
6
Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review.
Cardiovasc Res. 2013 Jul 15;99(2):242-50. doi: 10.1093/cvr/cvt044. Epub 2013 Mar 3.
7
In silico vascular modeling for personalized nanoparticle delivery.
Nanomedicine (Lond). 2013 Mar;8(3):343-57. doi: 10.2217/nnm.12.124. Epub 2012 Dec 2.
9
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验