Suppr超能文献

纳米颗粒在异质性肺血管系统中的转运与递送。

Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.

作者信息

Sohrabi Salman, Wang Shunqiang, Tan Jifu, Xu Jiang, Yang Jie, Liu Yaling

机构信息

Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA.

School of Mechanics and Engineering, Southwest Jiaotong University, 610031 Chengdu, China.

出版信息

J Biomech. 2017 Jan 4;50:240-247. doi: 10.1016/j.jbiomech.2016.11.023. Epub 2016 Nov 10.

Abstract

Quantitative understanding of nanoparticles delivery in a complex vascular networks is very challenging because it involves interplay of transport, hydrodynamic force, and multivalent interactions across different scales. Heterogeneous pulmonary network includes up to 16 generations of vessels in its arterial tree. Modeling the complete pulmonary vascular system in 3D is computationally unrealistic. To save computational cost, a model reconstructed from MRI scanned images is cut into an arbitrary pathway consisting of the upper 4-generations. The remaining generations are represented by an artificially rebuilt pathway. Physiological data such as branch information and connectivity matrix are used for geometry reconstruction. A lumped model is used to model the flow resistance of the branches that are cut off from the truncated pathway. Moreover, since the nanoparticle binding process is stochastic in nature, a binding probability function is used to simplify the carrier attachment and detachment processes. The stitched realistic and artificial geometries coupled with the lumped model at the unresolved outlets are used to resolve the flow field within the truncated arterial tree. Then, the biodistribution of 200nm, 700nm and 2µm particles at different vessel generations is studied. At the end, 0.2-0.5% nanocarrier deposition is predicted during one time passage of drug carriers through pulmonary vascular tree. Our truncated approach enabled us to efficiently model hemodynamics and accordingly particle distribution in a complex 3D vasculature providing a simple, yet efficient predictive tool to study drug delivery at organ level.

摘要

定量理解纳米颗粒在复杂血管网络中的输送极具挑战性,因为它涉及不同尺度下的传输、流体动力和多价相互作用之间的相互影响。非均匀肺网络在其动脉树中包含多达16代血管。对完整的三维肺血管系统进行建模在计算上是不现实的。为了节省计算成本,将从MRI扫描图像重建的模型切割成由上4代组成的任意路径。其余几代由人工重建的路径表示。诸如分支信息和连通性矩阵等生理数据用于几何重建。采用集总模型对从截断路径中切除的分支的流动阻力进行建模。此外,由于纳米颗粒结合过程本质上是随机的,因此使用结合概率函数来简化载体的附着和脱离过程。将缝合的真实和人工几何形状与未解析出口处的集总模型相结合,以求解截断动脉树内的流场。然后,研究了200nm、700nm和2μm颗粒在不同血管代的生物分布。最后,预测在药物载体单次通过肺血管树期间纳米载体的沉积率为0.2 - 0.5%。我们的截断方法使我们能够有效地对血流动力学以及复杂三维脉管系统中的颗粒分布进行建模,从而提供了一个简单而有效的预测工具,用于在器官水平研究药物递送。

相似文献

1
Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.
J Biomech. 2017 Jan 4;50:240-247. doi: 10.1016/j.jbiomech.2016.11.023. Epub 2016 Nov 10.
2
Numerical simulation of particle transport and deposition in the pulmonary vasculature.
J Biomech Eng. 2014 Dec;136(12):121010. doi: 10.1115/1.4028800.
3
Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
Microvasc Res. 2016 Nov;108:41-7. doi: 10.1016/j.mvr.2016.07.005. Epub 2016 Jul 14.
4
Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations.
Eur J Pharm Sci. 2022 Oct 1;177:106279. doi: 10.1016/j.ejps.2022.106279. Epub 2022 Aug 17.
5
An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
Eur J Pharm Sci. 2018 Feb 15;113:132-144. doi: 10.1016/j.ejps.2017.09.016. Epub 2017 Sep 14.
6
Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways.
Comput Methods Programs Biomed. 2020 Nov;196:105613. doi: 10.1016/j.cmpb.2020.105613. Epub 2020 Jun 20.
7
In silico vascular modeling for personalized nanoparticle delivery.
Nanomedicine (Lond). 2013 Mar;8(3):343-57. doi: 10.2217/nnm.12.124. Epub 2012 Dec 2.
8
A new approach to blood flow simulation in vascular networks.
Comput Methods Biomech Biomed Engin. 2016;19(6):673-85. doi: 10.1080/10255842.2015.1058926. Epub 2015 Jul 21.
9
Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow.
Med Biol Eng Comput. 2018 Nov;56(11):1949-1958. doi: 10.1007/s11517-018-1818-z. Epub 2018 Apr 26.

引用本文的文献

1
Rational nanoparticle design: Optimization using insights from experiments and mathematical models.
J Control Release. 2023 Aug;360:772-783. doi: 10.1016/j.jconrel.2023.07.018. Epub 2023 Jul 22.
2
Hierarchical Vessel Network-Supported Tumor Model-on-a-Chip Constructed by Induced Spontaneous Anastomosis.
ACS Appl Mater Interfaces. 2023 Feb 8;15(5):6431-6441. doi: 10.1021/acsami.2c19453. Epub 2023 Jan 24.
3
Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen.
Front Physiol. 2022 Feb 25;13:827428. doi: 10.3389/fphys.2022.827428. eCollection 2022.
4
A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition.
Int J Environ Res Public Health. 2020 Jan 7;17(2):380. doi: 10.3390/ijerph17020380.

本文引用的文献

2
Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.
J Nanosci Nanotechnol. 2016 Jun;16(6):5447-56. doi: 10.1166/jnn.2016.12068.
3
Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
Microvasc Res. 2016 Nov;108:41-7. doi: 10.1016/j.mvr.2016.07.005. Epub 2016 Jul 14.
4
Numerical simulation of particle transport and deposition in the pulmonary vasculature.
J Biomech Eng. 2014 Dec;136(12):121010. doi: 10.1115/1.4028800.
5
Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
Microvasc Res. 2014 Jul;94:17-27. doi: 10.1016/j.mvr.2014.04.008. Epub 2014 Apr 29.
6
Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field.
Comput Mech. 2014 Mar 1;53(3):403-412. doi: 10.1007/s00466-013-0968-y.
7
Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments.
Ann Biomed Eng. 2014 Apr;42(4):899-914. doi: 10.1007/s10439-013-0954-8. Epub 2013 Dec 7.
10
Flow shear stress and atherosclerosis: a matter of site specificity.
Antioxid Redox Signal. 2011 Sep 1;15(5):1405-14. doi: 10.1089/ars.2010.3679. Epub 2011 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验