Suppr超能文献

预测先进驾驶员辅助系统的接受度。

Predicting the acceptance of advanced rider assistance systems.

机构信息

Université de Lyon, IFSTTAR (LESCOT), 25 Avenue François Mitterrand, Case 24, 69675 Bron, France.

出版信息

Accid Anal Prev. 2013 Jan;50:51-8. doi: 10.1016/j.aap.2012.03.010. Epub 2012 Apr 5.

Abstract

The strong prevalence of human error as a crash causation factor in motorcycle accidents calls for countermeasures that help tackling this issue. Advanced rider assistance systems pursue this goal, providing the riders with support and thus contributing to the prevention of crashes. However, the systems can only enhance riding safety if the riders use them. For this reason, acceptance is a decisive aspect to be considered in the development process of such systems. In order to be able to improve behavioural acceptance, the factors that influence the intention to use the system need to be identified. This paper examines the particularities of motorcycle riding and the characteristics of this user group that should be considered when predicting the acceptance of advanced rider assistance systems. Founded on theories predicting behavioural intention, the acceptance of technologies and the acceptance of driver support systems, a model on the acceptance of advanced rider assistance systems is proposed, including the perceived safety when riding without support, the interface design and the social norm as determinants of the usage intention. Since actual usage cannot be measured in the development stage of the systems, the willingness to have the system installed on the own motorcycle and the willingness to pay for the system are analyzed, constituting relevant conditions that allow for actual usage at a later stage. Its validation with the results from user tests on four advanced rider assistance systems allows confirming the social norm and the interface design as powerful predictors of the acceptance of ARAS, while the extent of perceived safety when riding without support did not have any predictive value in the present study.

摘要

作为导致摩托车事故的主要原因之一,人为错误的普遍存在需要采取措施加以解决。高级驾驶员辅助系统旨在实现这一目标,为驾驶员提供支持,从而有助于预防事故的发生。然而,如果驾驶员不使用这些系统,那么它们只能增强驾驶安全性。出于这个原因,接受度是此类系统开发过程中需要考虑的决定性方面。为了能够提高行为接受度,需要确定影响系统使用意图的因素。本文研究了摩托车骑行的特殊性以及该用户群体的特点,这些特点在预测高级驾驶员辅助系统的接受度时需要加以考虑。该论文基于预测行为意图、技术接受和驾驶员支持系统接受的理论,提出了一个关于高级驾驶员辅助系统接受度的模型,包括在没有支持的情况下骑行时的感知安全性、界面设计和社会规范作为使用意图的决定因素。由于在系统的开发阶段无法测量实际使用情况,因此分析了愿意在自己的摩托车上安装系统和愿意支付系统费用的意愿,这构成了允许在以后阶段实际使用的相关条件。通过对四个高级驾驶员辅助系统的用户测试结果进行验证,证实了社会规范和界面设计是预测 ARAS 接受度的有力指标,而在本研究中,在没有支持的情况下骑行时的感知安全性程度没有任何预测价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验