Frungillo Lucas, de Oliveira Jusceley Fatima Palamim, Saviani Elzira Elisabeth, Oliveira Halley Caixeta, Martínez M Carmen, Salgado Ione
Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, Brazil.
Biochim Biophys Acta. 2013 Mar;1827(3):239-47. doi: 10.1016/j.bbabio.2012.11.011. Epub 2012 Nov 29.
The enzyme S-nitrosoglutathione reductase (GSNOR) has an important role in the metabolism of S-nitrosothiols (SNO) and, consequently, in the modulation of nitric oxide (NO)-mediated processes. Although the mitochondrial electron transport chain is an important target of NO, the role of GSNOR in the functionality of plant mitochondria has not been addressed. Here, we measured SNO content and NO emission in Arabidopsis thaliana cell suspension cultures of wild-type (WT) and GSNOR overexpressing (GSNOR(OE)) or antisense (GSNOR(AS)) transgenic lines, grown under optimal conditions and under nutritional stress. Respiratory activity of isolated mitochondria and expression of genes encoding for mitochondrial proteins were also analyzed. Under optimal growth conditions, GSNOR(OE) had the lowest SNO and NO levels and GSNOR(AS) the highest, as expected by the GSNO-consuming activity of GSNOR. Under stress, this pattern was reversed. Analysis of oxygen uptake by isolated mitochondria showed that complex I and external NADH dehydrogenase activities were inhibited in GSNOR(OE) cells grown under nutritional stress. Moreover, GSNOR(OE) could not increase alternative oxidase (AOX) activity under nutritional stress. GSNOR(AS) showed constitutively high activity of external NADH dehydrogenase, and maintained the activity of the uncoupling protein (UCP) under stress. The alterations observed in mitochondrial protein activities were not strictly correlated to changes in gene expression, but instead seemed to be related with the SNO/NO content, suggesting a post-transcriptional regulation. Overall, our results highlight the importance of GSNOR in modulating SNO and NO homeostasis as well mitochondrial functionality, both under normal and adverse conditions in A. thaliana cells.
S-亚硝基谷胱甘肽还原酶(GSNOR)在S-亚硝基硫醇(SNO)的代谢中发挥着重要作用,进而在一氧化氮(NO)介导的过程调节中发挥作用。尽管线粒体电子传递链是NO的一个重要作用靶点,但GSNOR在植物线粒体功能中的作用尚未得到研究。在此,我们测量了野生型(WT)、GSNOR过表达(GSNOR(OE))或反义(GSNOR(AS))转基因拟南芥细胞悬浮培养物在最佳条件下和营养胁迫下的SNO含量和NO释放量。我们还分析了分离线粒体的呼吸活性以及线粒体蛋白编码基因的表达情况。在最佳生长条件下,正如GSNOR消耗GSNO的活性所预期的那样,GSNOR(OE)的SNO和NO水平最低,而GSNOR(AS)的最高。在胁迫条件下,这种模式发生了逆转。对分离线粒体的氧气摄取分析表明,在营养胁迫下生长的GSNOR(OE)细胞中,复合体I和外部NADH脱氢酶的活性受到抑制。此外,在营养胁迫下,GSNOR(OE)无法增加交替氧化酶(AOX)的活性。GSNOR(AS)表现出外部NADH脱氢酶的组成性高活性,并在胁迫下维持解偶联蛋白(UCP)的活性。观察到的线粒体蛋白活性变化与基因表达变化并非严格相关,而是似乎与SNO/NO含量有关,这表明存在转录后调控。总体而言,我们的结果突出了GSNOR在调节拟南芥细胞正常和不利条件下的SNO和NO稳态以及线粒体功能方面的重要性。