Suppr超能文献

SlTrxh在SlMYB86下游发挥作用,并通过对番茄幼苗进行亚硝基化作用正向调控硝酸盐胁迫耐受性。

SlTrxh functions downstream of SlMYB86 and positively regulates nitrate stress tolerance via S-nitrosation in tomato seedling.

作者信息

Zeng Senlin, Sun Xudong, Zhai Jiali, Li Xixian, Pedro García-Caparrós, Nian Hongjuan, Li Kunzhi, Xu Huini

机构信息

Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China.

Yunnan Key Laboratory of Crop Wild Relatives, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

出版信息

Hortic Res. 2024 Jul 10;11(9):uhae184. doi: 10.1093/hr/uhae184. eCollection 2024 Sep.

Abstract

Nitric oxide (NO) is a redox-dependent signaling molecule that plays a crucial role in regulating a wide range of biological processes in plants. It functions by post-translationally modifying proteins, primarily through S-nitrosation. Thioredoxin (Trx), a small and ubiquitous protein with multifunctional properties, plays a pivotal role in the antioxidant defense system. However, the regulatory mechanism governing the response of tomato Trxh (SlTrxh) to excessive nitrate stress remains unknown. In this study, overexpression or silencing of in tomato led to increased or decreased nitrate stress tolerance, respectively. The overexpression of resulted in a reduction in levels of reactive oxygen species (ROS) and an increase in S-nitrosothiol (SNO) contents; conversely, silencing exhibited the opposite trend. The level of S-nitrosated SlTrxh was increased and decreased in overexpression and RNAi plants after nitrate treatment, respectively. SlTrxh was found to be susceptible to S-nitrosation both and , with Cysteine 54 potentially being the key site for S-nitrosation. Protein interaction assays revealed that SlTrxh physically interacts with SlGrx9, and this interaction is strengthened by S-nitrosation. Moreover, a combination of yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and transient expression assays confirmed the direct binding of SlMYB86 to the promoter, thereby enhancing its expression. SlMYB86 is located in the nucleus and overexpressed and knockout tomato lines showed enhanced and decreased nitrate stress tolerance, respectively. Our findings indicate that SlTrxh functions downstream of SlMYB86 and highlight the potential significance of S-nitrosation of SlTrxh in modulating its function under nitrate stress.

摘要

一氧化氮(NO)是一种依赖氧化还原的信号分子,在调节植物广泛的生物过程中发挥着关键作用。它通过翻译后修饰蛋白质来发挥作用,主要是通过S-亚硝基化。硫氧还蛋白(Trx)是一种具有多功能特性的小型普遍存在的蛋白质,在抗氧化防御系统中起关键作用。然而,番茄硫氧还蛋白h(SlTrxh)对过量硝酸盐胁迫的响应调控机制仍不清楚。在本研究中,番茄中SlTrxh的过表达或沉默分别导致硝酸盐胁迫耐受性增加或降低。SlTrxh的过表达导致活性氧(ROS)水平降低和S-亚硝基硫醇(SNO)含量增加;相反,SlTrxh的沉默则呈现相反的趋势。硝酸盐处理后,SlTrxh的S-亚硝基化水平在过表达和RNA干扰植株中分别升高和降低。发现SlTrxh在体内和体外均易受S-亚硝基化作用,半胱氨酸54可能是S-亚硝基化的关键位点。蛋白质相互作用分析表明,SlTrxh与SlGrx9发生物理相互作用,并且这种相互作用通过S-亚硝基化得到增强。此外,酵母单杂交(Y1H)、电泳迁移率变动分析(EMSA)、染色质免疫沉淀-定量PCR(ChIP-qPCR)和瞬时表达分析相结合,证实了SlMYB86与SlTrxh启动子的直接结合,从而增强其表达。SlMYB86定位于细胞核,SlTrxh过表达和敲除番茄株系分别表现出增强和降低的硝酸盐胁迫耐受性。我们的研究结果表明,SlTrxh在SlMYB86下游发挥作用,并突出了SlTrxh的S-亚硝基化在硝酸盐胁迫下调节其功能的潜在重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc91/11374535/6309a5013f87/uhae184f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验