Gokce Azime, Sekmen Askim Hediye
Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Türkiye.
Plant Cell Rep. 2025 Jul 1;44(7):164. doi: 10.1007/s00299-025-03558-y.
atglr3.4.1 knockout disrupts H₂O₂-scavenging enzymes, increasing ROS and redox imbalance. This upregulates COX5B, UPOX, and UCP. AtGLR3.4.2 maintains redox homeostasis, highlighting AtGLR3.4 receptors' role in mitochondrial stress. Glutamate receptors (iGluRs/mGluRs) play a crucial role in cognitive processes in mammals. Studies in humans have shown that the overexpression of glutamate receptors increases Ca⁺ influx into the cell, leading to nitric oxide (NO) accumulation, which in turn induces mitochondrial stress. Dysregulated activity of (iGluRs/mGluRs) is linked to depression, psychosis, and neurodegenerative diseases in humans. In plants, GLRs are involved in carbon and nitrogen metabolism and seed germination. Research in Arabidopsis has shown that GLRs play a key role in generating and responding to stress signals. However, it remains unknown how GLR-mediated changes in NO levels affect mitochondria in plants. To address this question, our study investigated the effects of AtGLR3.4.1 and AtGLR3.4.2 receptors on mitochondrial stress under nitrosative stress conditions. For this purpose, we used A. thaliana wild type and atglr3.4 mutants (atglr3.4.1 and atglr3.4.2). To induce mitochondrial stress, we applied 80 µM Complex I inhibitor Rotenone. We examined the accumulation of reactive oxygen/nitrogen species (ROS/RNS), the effectiveness of the antioxidants responsible for their scavenging, cellular redox balance, and the expression of mitochondrial stress-related genes. The absence of AtGLR3.4.1 increased ROS accumulation by inhibiting catalase (CAT) and ascorbate peroxidase (APX) and disrupting the GSH/GSSG and NAD/NADH ratios. In atglr3.4.2 mutants, ROS-related oxidative damage was regulated by the ascorbate-glutathione cycle. atglr3.4.1 knockout increases the transcription of stress-related genes (COX5B, UPOX, and UCP), highlighting its role in oxidative stress management. These findings highlight AtGLR3.4 is crucial for preventing excessive ROS and redox homeostasis under mitochondrial stress responses.
atglr3.4.1基因敲除会破坏过氧化氢清除酶,增加活性氧(ROS)并导致氧化还原失衡。这会上调COX5B、UPOX和UCP。AtGLR3.4.2维持氧化还原稳态,凸显了AtGLR3.4受体在线粒体应激中的作用。谷氨酸受体(离子型谷氨酸受体/代谢型谷氨酸受体)在哺乳动物的认知过程中起关键作用。对人类的研究表明,谷氨酸受体的过表达会增加钙离子流入细胞,导致一氧化氮(NO)积累,进而诱导线粒体应激。(离子型谷氨酸受体/代谢型谷氨酸受体)的活性失调与人类的抑郁症、精神病和神经退行性疾病有关。在植物中,谷氨酸受体样蛋白(GLRs)参与碳和氮代谢以及种子萌发。对拟南芥的研究表明,GLRs在产生和响应应激信号中起关键作用。然而,GLR介导的NO水平变化如何影响植物线粒体仍不清楚。为解决这个问题,我们的研究调查了AtGLR3.4.1和AtGLR3.4.2受体在亚硝化应激条件下对线粒体应激的影响。为此,我们使用了拟南芥野生型和atglr3.4突变体(atglr3.4.1和atglr3.4.2)。为诱导线粒体应激,我们施加了80微摩尔的复合体I抑制剂鱼藤酮。我们检测了活性氧/氮物质(ROS/RNS)的积累、负责清除它们的抗氧化剂的有效性、细胞氧化还原平衡以及线粒体应激相关基因的表达。AtGLR3.4.1的缺失通过抑制过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)以及破坏谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)和烟酰胺腺嘌呤二核苷酸/还原型烟酰胺腺嘌呤二核苷酸(NAD/NADH)比值来增加ROS积累。在atglr3.4.2突变体中,与ROS相关的氧化损伤由抗坏血酸 - 谷胱甘肽循环调节。atglr3.4.1基因敲除会增加应激相关基因(COX5B、UPOX和UCP)的转录,凸显了其在氧化应激管理中的作用。这些发现凸显了AtGLR3.4在预防线粒体应激反应下的过量ROS和氧化还原稳态方面至关重要。