Suppr超能文献

用于列表模式数据信号检测的渐近理想观察者和替代品质因数

Asymptotic ideal observers and surrogate figures of merit for signal detection with list-mode data.

作者信息

Clarkson Eric

机构信息

Department of Radiology and College of Optical Sciences, The University of Arizona, Tucson, Arizona 85724, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2012 Oct 1;29(10):2204-16. doi: 10.1364/JOSAA.29.002204.

Abstract

The asymptotic form for the likelihood ratio is derived for list-mode data generated by an imaging system viewing a possible signal in a randomly generated background. This calculation provides an approximation to the likelihood ratio that is valid in the limit of large number of list entries, i.e., a large number of photons. These results are then used to derive surrogate figures of merit, quantities that are correlated with ideal-observer performance on detection tasks, as measured by the area under the receiver operating characteristic curve, but are easier to compute. A key component of these derivations is the determination of asymptotic forms for the Fisher information for the signal amplitude in the limit of a large number of counts or a long exposure time. This quantity is useful in its own right as a figure of merit (FOM) for the task of estimating the signal amplitude. The use of the Fisher information in detection tasks is based on the fact that it provides an approximation for ideal-observer detectability when the signal is weak. For both the fixed-count and fixed-time cases, four surrogate figures of merit are derived. Two are based on maximum likelihood reconstructions; one uses the characteristic functional of the random backgrounds. The fourth surrogate FOM is identical in the two cases and involves an integral over attribute space for each of a randomly generated sequence of backgrounds.

摘要

针对成像系统在随机生成的背景中观察可能信号时生成的列表模式数据,推导了似然比的渐近形式。该计算提供了似然比的近似值,在列表条目数量很大(即大量光子)的极限情况下是有效的。然后利用这些结果推导出替代优值,这些量与检测任务中理想观察者的性能相关,通过接收者操作特征曲线下的面积来衡量,但更易于计算。这些推导的一个关键组成部分是在大量计数或长时间曝光的极限情况下,确定信号幅度的Fisher信息的渐近形式。这个量本身作为估计信号幅度任务的优值(FOM)是有用的。在检测任务中使用Fisher信息是基于这样一个事实,即当信号较弱时,它为理想观察者的可检测性提供了近似值。对于固定计数和固定时间的情况,推导出了四个替代优值。两个基于最大似然重建;一个使用随机背景的特征泛函。第四个替代FOM在这两种情况下是相同的,并且涉及对每个随机生成的背景序列在属性空间上的积分。

相似文献

本文引用的文献

7
List-mode likelihood.列表模式似然性
J Opt Soc Am A Opt Image Sci Vis. 1997 Nov;14(11):2914-23. doi: 10.1364/josaa.14.002914.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验