Suppr超能文献

图像质量的客观评估。III. ROC指标、理想观察者和似然生成函数。

Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions.

作者信息

Barrett H H, Abbey C K, Clarkson E

机构信息

Department of Radiology, Optical Sciences Center, University of Arizona, Tucson 85724-5067, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 1998 Jun;15(6):1520-35. doi: 10.1364/josaa.15.001520.

Abstract

We continue the theme of previous papers [J. Opt. Soc. Am. A 7, 1266 (1990); 12, 834 (1995)] on objective (task-based) assessment of image quality. We concentrate on signal-detection tasks and figures of merit related to the ROC (receiver operating characteristic) curve. Many different expressions for the area under an ROC curve (AUC) are derived for an arbitrary discriminant function, with different assumptions on what information about the discriminant function is available. In particular, it is shown that AUC can be expressed by a principal-value integral that involves the characteristic functions of the discriminant. Then the discussion is specialized to the ideal observer, defined as one who uses the likelihood ratio (or some monotonic transformation of it, such as its logarithm) as the discriminant function. The properties of the ideal observer are examined from first principles. Several strong constraints on the moments of the likelihood ratio or the log likelihood are derived, and it is shown that the probability density functions for these test statistics are intimately related. In particular, some surprising results are presented for the case in which the log likelihood is normally distributed under one hypothesis. To unify these considerations, a new quantity called the likelihood-generating function is defined. It is shown that all moments of both the likelihood and the log likelihood under both hypotheses can be derived from this one function. Moreover, the AUC can be expressed, to an excellent approximation, in terms of the likelihood-generating function evaluated at the origin. This expression is the leading term in an asymptotic expansion of the AUC; it is exact whenever the likelihood-generating function behaves linearly near the origin. It is also shown that the likelihood-generating function at the origin sets a lower bound on the AUC in all cases.

摘要

我们延续之前论文[《美国光学学会志A》7, 1266 (1990); 12, 834 (1995)]中关于图像质量客观(基于任务)评估的主题。我们专注于信号检测任务以及与ROC(接收者操作特征)曲线相关的品质因数。对于任意判别函数,在关于判别函数可用信息的不同假设下,推导出了许多不同的ROC曲线下面积(AUC)表达式。特别地,表明AUC可以由一个涉及判别函数特征函数的主值积分来表示。然后讨论专门针对理想观察者,理想观察者被定义为使用似然比(或其某种单调变换,如对数)作为判别函数的观察者。从基本原理出发研究了理想观察者的性质。推导了关于似然比或对数似然矩的几个强约束条件,并表明这些检验统计量的概率密度函数密切相关。特别地,对于对数似然在一个假设下呈正态分布的情况给出了一些惊人的结果。为了统一这些考虑,定义了一个名为似然生成函数的新量。表明在两个假设下似然和对数似然的所有矩都可以从这个单一函数推导出来。此外,AUC可以用在原点处评估的似然生成函数非常精确地近似表示。这个表达式是AUC渐近展开中的首项;只要似然生成函数在原点附近呈线性行为,它就是精确的。还表明在所有情况下,原点处的似然生成函数为AUC设定了一个下限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验