School of Biosciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
Biochem Soc Trans. 2011 Jan;39(1):31-5. doi: 10.1042/BST0390031.
RNAPs (RNA polymerases) are complex molecular machines that contain a highly conserved catalytic site surrounded by conformationally flexible domains. High-throughput mutagenesis in the archaeal model system Methanocaldococcus jannaschii has demonstrated that the nanomechanical properties of one of these domains, the bridge-helix, exert a key regulatory role on the rate of the NAC (nucleotide-addition cycle). Mutations that increase the probability and/or half-life of kink formation in the BH-HC (bridge-helix C-terminal hinge) cause a substantial increase in specific activity ('superactivity'). Fully atomistic molecular dynamics simulations show that kinking of the BH-HC appears to be driven by cation-π interactions and involve amino acid side chains that are exceptionally highly conserved in all prokaryotic and eukaryotic species.
RNA 聚合酶(RNAPs)是一种复杂的分子机器,包含一个高度保守的催化位点,周围是构象灵活的结构域。在古菌模型系统甲烷球菌热球菌中的高通量诱变实验表明,这些结构域之一的桥螺旋(bridge-helix)的纳米力学特性对 NAC(核苷酸添加循环)的速率具有关键的调节作用。增加 BH-HC(桥螺旋 C 端铰链)中弯曲形成的概率和/或半衰期的突变会导致比活度(specific activity)显著增加(“超活性”)。全原子分子动力学模拟表明,BH-HC 的弯曲似乎是由阳离子-π 相互作用驱动的,并涉及到在所有原核和真核生物中都高度保守的氨基酸侧链。