Suppr超能文献

细菌肌动蛋白 MamK:体外组装行为和丝状体结构。

The bacterial actin MamK: in vitro assembly behavior and filament architecture.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.

出版信息

J Biol Chem. 2013 Feb 8;288(6):4265-77. doi: 10.1074/jbc.M112.417030. Epub 2012 Nov 30.

Abstract

It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general.

摘要

现在人们已经认识到,肌动蛋白样蛋白在细菌中广泛存在,与真核肌动蛋白不同,它们在序列和功能上高度多样化。细菌肌动蛋白 MamK 代表一个进化枝,主要存在于趋磁细菌中,它参与亚细胞细胞器的正确组织,称为磁小体。我们之前已经表明,来自 Magnetospirillum magneticum AMB-1(AMB-1)的 MamK 在体内形成动态纤维。为了更深入地了解 MamK 动力学和功能的分子机制,我们现在研究了 MamK 的体外特性。我们证明 MamK 是一种 ATP 酶,在 ATP 的存在下,它迅速组装成纤维,一旦 ATP 耗尽,纤维就会解体。保守活性位点残基(E143A)的突变会使 MamK 的 ATP 酶活性丧失,但不会使其形成纤维的能力丧失。纤维解体依赖于 ATP 酶活性和钾离子水平,后者导致 MamK 纤维形成束。这些数据与观察结果一致,表明需要辅助因子来促进纤维解体,并在体内对纤维进行空间组织。我们还使用冷冻电子显微镜获得了 MamK 纤维的高分辨率结构。MamK 采用双股螺旋丝状结构,但与真核肌动蛋白和其他肌动蛋白样纤维不同,MamK 链中的亚基没有交错,从而产生独特的纤维结构。除了扩展我们对趋磁细菌中 MamK 的性质和功能的了解之外,这项研究还强调了细菌肌动蛋白的功能和结构多样性。

相似文献

引用本文的文献

1
A family of bacterial actin homologs forms a three-stranded tubular structure.一族细菌肌动蛋白同源物形成了一种三链管状结构。
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2500913122. doi: 10.1073/pnas.2500913122. Epub 2025 Mar 12.
3
Archaeal actins and the origin of a multi-functional cytoskeleton.古菌肌动蛋白与多功能细胞骨架的起源。
J Bacteriol. 2024 Mar 21;206(3):e0034823. doi: 10.1128/jb.00348-23. Epub 2024 Feb 23.
9
Current view of iron biomineralization in magnetotactic bacteria.趋磁细菌中铁生物矿化的当前观点。
J Struct Biol X. 2021 Oct 13;5:100052. doi: 10.1016/j.yjsbx.2021.100052. eCollection 2021.

本文引用的文献

2
Novel actin-like filament structure from Clostridium tetani.破伤风梭菌新型肌动蛋白样丝结构。
J Biol Chem. 2012 Jun 15;287(25):21121-9. doi: 10.1074/jbc.M112.341016. Epub 2012 Apr 18.
3
FtsA forms actin-like protofilaments.FtsA 形成类似于肌动蛋白的原丝。
EMBO J. 2012 May 16;31(10):2249-60. doi: 10.1038/emboj.2012.76. Epub 2012 Mar 30.
4
Real-space processing of helical filaments in SPARX.在 SPARX 中对螺旋丝进行实空间处理。
J Struct Biol. 2012 Feb;177(2):302-13. doi: 10.1016/j.jsb.2011.12.020. Epub 2012 Jan 11.
5
A growing family: the expanding universe of the bacterial cytoskeleton.不断壮大的家族:细菌细胞骨架的扩展宇宙。
FEMS Microbiol Rev. 2012 Jan;36(1):256-66. doi: 10.1111/j.1574-6976.2011.00316.x. Epub 2011 Nov 28.
8
10
Direct membrane binding by bacterial actin MreB.细菌肌动蛋白 MreB 的直接膜结合。
Mol Cell. 2011 Aug 5;43(3):478-87. doi: 10.1016/j.molcel.2011.07.008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验