Suppr超能文献

细菌肌动蛋白 MreB 会旋转,而旋转依赖于细胞壁的组装。

The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15822-7. doi: 10.1073/pnas.1108999108. Epub 2011 Sep 8.

Abstract

Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

摘要

细菌细胞拥有多种参与广泛细胞过程的细胞骨架蛋白。这些细胞骨架蛋白是动态的,但这些动态的驱动力和细胞功能仍知之甚少。真核细胞骨架的动力学通常是由马达蛋白驱动的,但到目前为止,还没有发现驱动细胞骨架运动的细菌马达蛋白。在这里,我们定量研究了大肠杆菌肌动蛋白同源物 MreB 的动力学,该蛋白对于细菌棒状细胞形状的维持是必不可少的。我们发现 MreB 以持续的方式围绕细胞的长轴旋转。虽然先前的研究表明 MreB 动力学是由其自身的聚合驱动的,但我们表明 MreB 的旋转不依赖于其自身的聚合,而是需要肽聚糖细胞壁的组装。细胞壁合成机制因此要么构成了一种新型的胞外马达,对细胞质中的 MreB 施加力,要么是间接需要一个尚未确定的马达。生物物理模拟表明,MreB 旋转的一个功能是确保新的肽聚糖插入位点的均匀分布,这是在生长过程中保持棒状形状的必要条件。这些发现拓宽了对细胞骨架马达的看法,并加深了我们对细菌形态发生的物理基础的理解。

相似文献

1

引用本文的文献

本文引用的文献

1
Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria.杆状革兰氏阴性菌中维持细胞形态的机制。
Mol Microbiol. 2011 Jul;81(2):340-53. doi: 10.1111/j.1365-2958.2011.07616.x. Epub 2011 Apr 18.
4
The bacterial cytoskeleton.细菌细胞骨架。
Annu Rev Genet. 2010;44:365-92. doi: 10.1146/annurev-genet-102108-134845.
5
The structure and function of bacterial actin homologs.细菌肌动蛋白同源物的结构与功能。
Cold Spring Harb Perspect Biol. 2010 Sep;2(9):a000364. doi: 10.1101/cshperspect.a000364. Epub 2010 Jul 14.
9
Cell shape and cell-wall organization in Gram-negative bacteria.革兰氏阴性菌的细胞形态与细胞壁结构
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19282-7. doi: 10.1073/pnas.0805309105. Epub 2008 Dec 2.
10
Molecular organization of Gram-negative peptidoglycan.革兰氏阴性菌肽聚糖的分子结构
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18953-7. doi: 10.1073/pnas.0808035105. Epub 2008 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验