Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany.
Geobiology. 2013 Mar;11(2):180-90. doi: 10.1111/gbi.12019. Epub 2012 Dec 4.
Nitrate-reducing, Fe(II)-oxidizing bacteria were suggested to couple with enzymatic Fe(II) oxidation to nitrate reduction. Denitrification proceeds via intermediates (NO2 -, NO) that can oxidize Fe(II) abiotically at neutral and particularly at acidic pH. Here, we present a revised Fe(II) quantification protocol preventing artifacts during acidic Fe extraction and evaluate the contribution of abiotic vs. enzymatic Fe(II) oxidation in cultures of the nitrate-reducing, Fe(II) oxidizer Acidovorax sp. BoFeN1. Sulfamic acid used instead of HCl reacts with nitrite and prevents abiotic Fe(II) oxidation during Fe extraction. Abiotic experiments without sulfamic acid showed that acidification of oxic Fe(II) nitrite samples leads to 5.6-fold more Fe(II) oxidation than in anoxic samples because the formed NO becomes rapidly reoxidized by O(2) , therefore leading to abiotic oxidation and underestimation of Fe(II). With our revised protocol using sulfamic acid, we quantified oxidation of approximately 7 mm of Fe(II) by BoFeN1 within 4 days. Without addition of sulfamic acid, the same oxidation was detected within only 2 days. Additionally, abiotic incubation of Fe(II) with nitrite in the presence of goethite as surface catalyst led to similar abiotic Fe(II) oxidation rates as observed in growing BoFeN1 cultures. BoFeN1 growth was observed on acetate with N(2) O as electron acceptor. When adding Fe(II), no Fe(II) oxidation was observed, suggesting that the absence of reactive N intermediates (NO2 -, NO) precludes Fe(II) oxidation. The addition of ferrihydrite [Fe(OH)(3) ] to acetate/nitrate BoFeN1 cultures led to growth stimulation equivalent to previously described effects on growth by adding Fe(II). This suggests that elevated iron concentrations might provide a nutritional effect rather than energy-yielding Fe(II) oxidation. Our findings therefore suggest that although enzymatic Fe(II) oxidation by denitrifiers cannot be fully ruled out, its contribution to the observed Fe(II) oxidation in microbial cultures is probably lower than previously suggested and has to be questioned in general until the enzymatic machinery-mediating Fe(II) oxidation is identified.
硝酸盐还原、亚铁氧化细菌被认为可以与酶促亚铁氧化耦合来还原硝酸盐。反硝化过程通过中间体(NO2-、NO)进行,这些中间体可以在中性和特别是酸性 pH 下非生物地氧化亚铁。在这里,我们提出了一种改进的亚铁定量测定方案,以防止在酸性亚铁提取过程中产生假象,并评估硝酸盐还原、亚铁氧化菌 Acidovorax sp. BoFeN1 培养物中生物和非生物亚铁氧化的贡献。与 HCl 相比,使用氨基磺酸反应与亚硝酸盐反应,并在亚铁提取过程中防止非生物亚铁氧化。没有氨基磺酸的非生物实验表明,在有氧 Fe(II)-亚硝酸盐样品酸化会导致比无氧样品多 5.6 倍的亚铁氧化,因为形成的 NO 会迅速被 O2 重新氧化,因此导致非生物氧化和亚铁低估。使用我们的改进的含有氨基磺酸的方案,我们在 4 天内定量测定了 BoFeN1 氧化约 7mm 的亚铁。没有添加氨基磺酸,同样的氧化仅在 2 天内被检测到。此外,在作为表面催化剂的针铁矿存在下,亚铁与亚硝酸盐的非生物孵育导致类似的非生物亚铁氧化速率,如在生长的 BoFeN1 培养物中观察到的那样。BoFeN1 在以 N2O 为电子受体的乙酸盐上生长。当添加亚铁时,没有观察到亚铁氧化,这表明缺乏反应性氮中间体(NO2-、NO)排除了亚铁氧化。将水铁矿 [Fe(OH)3] 添加到乙酸盐/硝酸盐 BoFeN1 培养物中会导致生长刺激,相当于先前描述的添加亚铁对生长的影响。这表明,高铁浓度可能提供营养效应,而不是产生能量的亚铁氧化。因此,我们的研究结果表明,尽管硝酸盐还原菌的酶促亚铁氧化不能完全排除,但它对微生物培养物中观察到的亚铁氧化的贡献可能低于先前的建议,并且在确定介导亚铁氧化的酶促机制之前,一般需要对此提出质疑。