Suppr超能文献

混合营养型硝酸盐还原铁(II)氧化菌 Acidovorax sp. BoFeN1 存在下 Fe(II)-有机物复合物的氧化

Oxidation of Fe(II)-Organic Matter Complexes in the Presence of the Mixotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacterium Acidovorax sp. BoFeN1.

机构信息

Geomicrobiology, Center for Applied Geoscience , University of Tuebingen , Sigwartstrasse 10 , 72076 Tuebingen , Germany.

Université de Bordeaux , UMR EPOC 5805, TGM Team , 33615 Pessac , France.

出版信息

Environ Sci Technol. 2018 May 15;52(10):5753-5763. doi: 10.1021/acs.est.8b00953. Epub 2018 Apr 27.

Abstract

Fe(II)-organic matter (Fe(II)-OM) complexes are abundant in the environment and may play a key role for the behavior of Fe and pollutants. Mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOx) reduce nitrate coupled to the oxidation of organic compounds and Fe(II). Fe(II) oxidation may occur enzymatically or abiotically by reaction with nitrite that forms during heterotrophic denitrification. However, it is unknown whether Fe(II)-OM complexes can be oxidized by NRFeOx. We used cell-suspension experiments with the mixotrophic nitrate-reducing Fe(II)-oxidizing bacterium Acidovorax sp. strain BoFeN1 to reveal the role of nonorganically bound Fe(II) (aqueous Fe(II)) and nitrite for the rates and extent of oxidation of Fe(II)-OM complexes (Fe(II)-citrate, Fe(II)-EDTA, Fe(II)-humic acid, and Fe(II)-fulvic acid). We found that Fe(II)-OM complexation inhibited microbial nitrate-reducing Fe(II) oxidation; large colloidal and negatively charged complexes showed lower oxidation rates than aqueous Fe(II). Accumulation of nitrite and fast abiotic oxidation of Fe(II)-OM complexes only happened in the presence of aqueous Fe(II) that probably interacted with (nitrite-reducing) enzymes in the periplasm causing nitrite accumulation in the periplasm and outside of the cells, whereas Fe(II)-OM complexes probably could not enter the periplasm and cause nitrite accumulation. These results suggest that Fe(II) oxidation by mixotrophic nitrate reducers in the environment depends on Fe(II) speciation, and that aqueous Fe(II) potentially plays a critical role in regulating microbial denitrification processes.

摘要

亚铁-有机物 (Fe(II)-OM) 配合物在环境中大量存在,可能对铁和污染物的行为起着关键作用。兼性硝酸盐还原铁(II)氧化菌 (NRFeOx) 可以在还原硝酸盐的同时氧化有机化合物和 Fe(II)。Fe(II) 氧化可能通过酶促反应或与异养反硝化过程中形成的亚硝酸盐反应发生非生物转化。然而,Fe(II)-OM 配合物是否可以被 NRFeOx 氧化尚不清楚。我们使用兼性硝酸盐还原铁(II)氧化菌 Acidovorax sp. strain BoFeN1 的细胞悬浮实验,揭示了非有机结合态亚铁 (水合亚铁 (aqueous Fe(II))) 和亚硝酸盐对 Fe(II)-OM 配合物 (Fe(II)-柠檬酸盐、Fe(II)-EDTA、Fe(II)-腐殖酸和 Fe(II)-富里酸) 氧化速率和程度的影响。我们发现 Fe(II)-OM 络合抑制了微生物硝酸盐还原铁(II)氧化;大胶体和带负电荷的配合物的氧化速率低于水合亚铁 (aqueous Fe(II))。只有在存在水合亚铁 (aqueous Fe(II))的情况下,亚硝酸盐才会积累,Fe(II)-OM 配合物才会发生快速的非生物氧化,这可能是因为水合亚铁 (aqueous Fe(II)) 与周质中的(亚硝酸盐还原)酶相互作用,导致亚硝酸盐在周质和细胞外积累,而 Fe(II)-OM 配合物可能无法进入周质并导致亚硝酸盐积累。这些结果表明,环境中兼性硝酸盐还原菌的 Fe(II)氧化取决于 Fe(II)的形态,水合亚铁 (aqueous Fe(II)) 可能在调节微生物反硝化过程中起着关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验