Suppr超能文献

利用温度和降雨量预测登革热发病率。

Forecast of dengue incidence using temperature and rainfall.

机构信息

Umeå Centre for Global Health Research, Epidemiology and Global Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.

出版信息

PLoS Negl Trop Dis. 2012;6(11):e1908. doi: 10.1371/journal.pntd.0001908. Epub 2012 Nov 29.

Abstract

INTRODUCTION

An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore.

METHODOLOGY AND PRINCIPAL FINDINGS

We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98%) in 2004-2010 and 98% (CI = 95%-100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm.

SIGNIFICANCE

We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.

摘要

简介

准确的早期预警系统可预测即将发生的传染病疫情,从而增强登革热预防措施的效果。本研究旨在开发和验证一种预测模型,以便在新加坡预测登革热病例并提供及时的早期预警。

方法和主要发现

我们使用 2000-2010 年期间每周平均温度和累计降雨量开发了一个时间序列泊松多元回归模型。天气数据通过分段线性样条函数进行建模。我们分析了登革热和天气变量之间的各种滞后时间,以确定最佳的登革热预测期。模型中考虑了自回归、季节性和趋势。我们使用单独的天气数据,根据 2011 年第 1 周到 2012 年第 16 周的登革热病例对模型进行了预测,从而验证了模型。模型选择和验证基于赤池信息量准则、标准化均方根误差和残差诊断。使用接收者操作特征曲线分析了流行预测的敏感性。登革热预测的最佳周期为 16 周。在模型训练和验证期间,我们的模型分别以报告病例标准差的 0.3 和 0.32 的误差正确预测。在 2004-2010 年,该模型对暴发和非暴发的区分能力足够强,灵敏度为 96%(置信区间为 93-98%),2011 年为 98%(置信区间为 95%-100%)。该模型准确预测了 2011 年的疫情,假警报的可能性小于 3%。

意义

我们开发了一种基于天气的登革热预测模型,可提前 16 周发出登革热疫情的高敏感性和特异性预警。我们证明,使用温度和降雨量的模型可以是简单、精确和低成本的登革热预测工具,可用于增强有关时机、病媒控制行动规模和有限资源利用的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1063/3510154/f0e99b69062b/pntd.0001908.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验