Villela Daniel A M
Program of Scientific Computing, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
Sci Rep. 2025 Jul 23;15(1):26733. doi: 10.1038/s41598-025-12356-1.
Predicting the likelihood of high infectious disease incidence is critical for effective health surveillance. In the epidemiology of dengue, environmental conditions can significantly impact the transmission of the virus. Utilizing epidemiological indicators in conjunction with environmental variables can enhance predictions of dengue incidence risk. This study analyzed a dataset of weekly case numbers, temperature, and humidity across Brazilian municipalities to forecast the risk of high dengue incidence using data from 2014 to 2024. The framework involved constructing path signatures and applying lasso regression for binary outcomes. Sensitivity reached 75%, while specificity was extremely high, ranging from 75 to 100%. The best performance was observed with information gathered after 35 weeks of observations using data augmentation via embedding techniques. Path signatures effectively capture information from epidemiological and climate variables that influence dengue transmission. This framework can be applied in other countries, and its predictions can help optimize resource allocation for disease control.
预测高传染病发病率的可能性对于有效的健康监测至关重要。在登革热流行病学中,环境条件会显著影响病毒的传播。将流行病学指标与环境变量结合使用可以提高对登革热发病率风险的预测。本研究分析了巴西各城市每周病例数、温度和湿度的数据集,以利用2014年至2024年的数据预测高登革热发病率的风险。该框架包括构建路径特征并将套索回归应用于二元结果。灵敏度达到75%,而特异性极高,范围从75%到100%。使用嵌入技术通过数据增强在观察35周后收集的信息表现最佳。路径特征有效地捕捉了影响登革热传播的流行病学和气候变量的信息。该框架可应用于其他国家,其预测有助于优化疾病控制的资源分配。