Suppr超能文献

SLC1A5 介导肺癌细胞生长和存活所需的谷氨酰胺转运。

SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival.

机构信息

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Jim Ayers Institute of Precancer Detection and Diagnosis, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

出版信息

Clin Cancer Res. 2013 Feb 1;19(3):560-70. doi: 10.1158/1078-0432.CCR-12-2334. Epub 2012 Dec 4.

Abstract

PURPOSE

We have previously identified solute-linked carrier family A1 member 5 (SLC1A5) as an overexpressed protein in a shotgun proteomic analysis of stage I non-small cell lung cancer (NSCLC) when compared with matched controls. We hypothesized that overexpression of SLC1A5 occurs to meet the metabolic demand for lung cancer cell growth and survival.

EXPERIMENTAL DESIGN

To test our hypothesis, we first analyzed the protein expression of SLC1A5 in archival lung cancer tissues by immunohistochemistry and immunoblotting (N = 98) and in cell lines (N = 36). To examine SLC1A5 involvement in amino acid transportation, we conducted kinetic analysis of l-glutamine (Gln) uptake in lung cancer cell lines in the presence and absence of a pharmacologic inhibitor of SLC1A5, gamma-l-Glutamyl-p-Nitroanilide (GPNA). Finally, we examined the effect of Gln deprivation and uptake inhibition on cell growth, cell-cycle progression, and growth signaling pathways of five lung cancer cell lines.

RESULTS

Our results show that (i) SLC1A5 protein is expressed in 95% of squamous cell carcinomas (SCC), 74% of adenocarcinomas (ADC), and 50% of neuroendocrine tumors; (ii) SLC1A5 is located at the cytoplasmic membrane and is significantly associated with SCC histology and male gender; (iii) 68% of Gln is transported in a Na(+)-dependent manner, 50% of which is attributed to SLC1A5 activity; and (iv) pharmacologic and genetic targeting of SLC1A5 decreased cell growth and viability in lung cancer cells, an effect mediated in part by mTOR signaling.

CONCLUSIONS

These results suggest that SLC1A5 plays a key role in Gln transport controlling lung cancer cells' metabolism, growth, and survival.

摘要

目的

我们之前在对 I 期非小细胞肺癌(NSCLC)的蛋白质组学分析中发现溶质载体家族 A1 成员 5(SLC1A5)是一种过表达蛋白,与匹配的对照组相比。我们假设 SLC1A5 的过表达是为了满足肺癌细胞生长和存活的代谢需求。

实验设计

为了验证我们的假设,我们首先通过免疫组织化学和免疫印迹(N=98)分析了 SLC1A5 在存档肺癌组织中的蛋白表达,并在细胞系(N=36)中进行了分析。为了研究 SLC1A5 在氨基酸转运中的作用,我们在存在和不存在 SLC1A5 的药理学抑制剂γ-L-谷氨酰基对硝基苯胺(GPNA)的情况下,对肺癌细胞系中 l-谷氨酰胺(Gln)摄取进行了动力学分析。最后,我们研究了 Gln 剥夺和摄取抑制对五种肺癌细胞系的细胞生长、细胞周期进程和生长信号通路的影响。

结果

我们的结果表明:(i)SLC1A5 蛋白在 95%的鳞状细胞癌(SCC)、74%的腺癌(ADC)和 50%的神经内分泌肿瘤中表达;(ii)SLC1A5 位于细胞质膜上,与 SCC 组织学和男性性别显著相关;(iii)68%的 Gln 以依赖 Na+的方式转运,其中 50%归因于 SLC1A5 的活性;(iv)SLC1A5 的药理学和遗传学靶向降低了肺癌细胞的细胞生长和活力,部分通过 mTOR 信号介导。

结论

这些结果表明 SLC1A5 在 Gln 转运中发挥关键作用,控制肺癌细胞的代谢、生长和存活。

相似文献

1
SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival.
Clin Cancer Res. 2013 Feb 1;19(3):560-70. doi: 10.1158/1078-0432.CCR-12-2334. Epub 2012 Dec 4.
2
Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer.
Int J Cancer. 2015 Oct 1;137(7):1587-97. doi: 10.1002/ijc.29535. Epub 2015 May 6.
3
SLC1A5 Silencing Inhibits Esophageal Cancer Growth via Cell Cycle Arrest and Apoptosis.
Cell Physiol Biochem. 2018;48(1):397. doi: 10.1159/000491769. Epub 2018 Aug 2.
6
1,25-Dihydroxyvitamin D inhibits glutamine metabolism in Harvey-ras transformed MCF10A human breast epithelial cell.
J Steroid Biochem Mol Biol. 2016 Oct;163:147-56. doi: 10.1016/j.jsbmb.2016.04.022. Epub 2016 May 3.
7
LncRNA Axis Contributes to Malignant Progression of Hepatocellular Carcinoma.
Discov Med. 2023 Dec;35(179):995-1014. doi: 10.24976/Discov.Med.202335179.96.
8
Particulate matter facilitates amphiregulin-dependent lung cancer proliferation through glutamine metabolism.
Int J Biol Sci. 2024 May 27;20(8):3126-3139. doi: 10.7150/ijbs.96210. eCollection 2024.
10
The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5).
J Biol Chem. 2018 Feb 23;293(8):2877-2887. doi: 10.1074/jbc.RA117.001342. Epub 2018 Jan 11.

引用本文的文献

2
Clinical application prospects of traditional Chinese medicine as adjuvant therapy for metabolic reprogramming in colorectal cancer.
Front Immunol. 2025 Jul 15;16:1630279. doi: 10.3389/fimmu.2025.1630279. eCollection 2025.
3
Beyond the tumor: Enhancing pancreatic cancer therapy through glutamine metabolism and innovative drug delivery.
J Cell Commun Signal. 2025 Jul 9;19(3):e70033. doi: 10.1002/ccs3.70033. eCollection 2025 Sep.
4
The Landscape of Cancer Metabolism as a Therapeutic Target.
Pathol Int. 2025 Aug;75(8):387-402. doi: 10.1111/pin.70034. Epub 2025 Jun 24.
5
The RNA demethylase FTO promotes glutamine metabolism in clear cell renal cell carcinoma through the regulation of SLC1A5.
Sci Adv. 2025 Jun 20;11(25):eadv2417. doi: 10.1126/sciadv.adv2417. Epub 2025 Jun 18.
6
Lifting the veil on tumor metabolism: A GDH1-focused perspective.
iScience. 2025 May 3;28(6):112551. doi: 10.1016/j.isci.2025.112551. eCollection 2025 Jun 20.
7
Metabolic reprogramming and therapeutic targeting in non-small cell lung cancer: emerging insights beyond the Warburg effect.
Front Oncol. 2025 May 21;15:1564226. doi: 10.3389/fonc.2025.1564226. eCollection 2025.

本文引用的文献

1
In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers.
Mol Cell Proteomics. 2012 Oct;11(10):916-32. doi: 10.1074/mcp.M111.015370. Epub 2012 Jul 3.
3
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19611-6. doi: 10.1073/pnas.1117773108. Epub 2011 Nov 21.
4
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.
6
7
Global cancer statistics.
CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. doi: 10.3322/caac.20107. Epub 2011 Feb 4.
8
2010 Keystone Symposium: Metabolism and Cancer Progression.
Future Oncol. 2010 Jun;6(6):893-5. doi: 10.2217/fon.10.52.
9
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93. doi: 10.1073/pnas.1003428107. Epub 2010 Apr 26.
10
Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling.
Cancer Res. 2009 Oct 15;69(20):7986-93. doi: 10.1158/0008-5472.CAN-09-2266. Epub 2009 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验