Suppr超能文献

通过扩散熵的平衡估计评估生理信号中的尺度不变性。

Evaluation of scale invariance in physiological signals by means of balanced estimation of diffusion entropy.

作者信息

Zhang Wenqing, Qiu Lu, Xiao Qin, Yang Huijie, Zhang Qingjun, Wang Jianyong

机构信息

Business School, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056107. doi: 10.1103/PhysRevE.86.056107. Epub 2012 Nov 12.

Abstract

By means of the concept of the balanced estimation of diffusion entropy, we evaluate the reliable scale invariance embedded in different sleep stages and stride records. Segments corresponding to waking, light sleep, rapid eye movement (REM) sleep, and deep sleep stages are extracted from long-term electroencephalogram signals. For each stage the scaling exponent value is distributed over a considerably wide range, which tell us that the scaling behavior is subject and sleep cycle dependent. The average of the scaling exponent values for waking segments is almost the same as that for REM segments (∼0.8). The waking and REM stages have a significantly higher value of the average scaling exponent than that for light sleep stages (∼0.7). For the stride series, the original diffusion entropy (DE) and the balanced estimation of diffusion entropy (BEDE) give almost the same results for detrended series. The evolutions of local scaling invariance show that the physiological states change abruptly, although in the experiments great efforts have been made to keep conditions unchanged. The global behavior of a single physiological signal may lose rich information on physiological states. Methodologically, the BEDE can evaluate with considerable precision the scale invariance in very short time series (∼10^{2}), while the original DE method sometimes may underestimate scale-invariance exponents or even fail in detecting scale-invariant behavior. The BEDE method is sensitive to trends in time series. The existence of trends may lead to an unreasonably high value of the scaling exponent and consequent mistaken conclusions.

摘要

借助扩散熵平衡估计的概念,我们评估了不同睡眠阶段和步幅记录中所蕴含的可靠尺度不变性。从长期脑电图信号中提取出对应清醒、浅睡眠、快速眼动(REM)睡眠和深睡眠阶段的片段。对于每个阶段,标度指数值分布在相当宽的范围内,这表明标度行为因睡眠周期而异。清醒片段的标度指数值平均值与REM片段的几乎相同(约为0.8)。清醒和REM阶段的平均标度指数值明显高于浅睡眠阶段(约为0.7)。对于步幅序列,原始扩散熵(DE)和扩散熵平衡估计(BEDE)对去趋势序列给出的结果几乎相同。局部尺度不变性的演变表明,尽管在实验中已尽力保持条件不变,但生理状态仍会突然变化。单个生理信号的全局行为可能会丢失有关生理状态的丰富信息。从方法学上讲,BEDE能够以相当高的精度评估非常短的时间序列(约10²)中的尺度不变性,而原始DE方法有时可能会低估尺度不变性指数,甚至无法检测到尺度不变行为。BEDE方法对时间序列中的趋势很敏感。趋势的存在可能导致标度指数值过高,从而得出错误的结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验