Suppr超能文献

脑网络稳定性与参与者识别:大数据与复杂网络分析的综合方法

Brain Network Constancy and Participant Recognition: an Integrated Approach to Big Data and Complex Network Analysis.

作者信息

Qiu Lu, Nan Wenya

机构信息

School of Finance and Business, Shanghai Normal University, Shanghai, China.

Department of Finance, East China University of Science and Technology, Shanghai, China.

出版信息

Front Psychol. 2020 Jun 3;11:1003. doi: 10.3389/fpsyg.2020.01003. eCollection 2020.

Abstract

With the development of big data sharing and data standardization, electroencephalogram (EEG) data are increasingly used in the exploration of human cognitive behavior. Most of the existing studies focus on the changes of human brain network topology (the number of connections, degree distribution, clustering coefficient phantom) in various cognitive behaviors. However, there has been little exploration into the steady state of multi-cognitive behaviors and the recognition of multi-participant brain networks. To solve these two problems, we used EEG data of 99 healthy participants from the PhysioBank to study multi-cognitive behaviors. Specifically, we calculated the symbolic transfer entropy (STE) between 64 electrode sequences of EEG data and constructed the brain networks of various cognitive behaviors of each participant using the directed minimum spanning tree (DMST) algorithm. We then investigated the eigenvalue spectrum of the STE matrix of each individual's cognitive behavior. The results also showed that the spectrum distributions of different cognitive states of the same participant remained relatively stable, but those of the same cognitive state of different participants varied considerably, verifying the relative stability and uniqueness of the human brain network similar to a human's fingerprint. Based on these features, we used the spectral distribution set of 99 participants of various cognitive states as the original data set and developed a spectral distribution set scoring (SDSS) method to identify the brain network participants. It was found that most labels (69.35%) of the test participant with the highest score were identical to the labeled participant. This study provided further evidence for the existence of human brain fingerprints, and furnished a new approach for dynamic identification of brain fingerprints.

摘要

随着大数据共享和数据标准化的发展,脑电图(EEG)数据越来越多地用于人类认知行为的探索。现有的大多数研究都集中在各种认知行为中人类大脑网络拓扑结构的变化(连接数量、度分布、聚类系数等)。然而,对于多认知行为的稳态以及多参与者大脑网络的识别却鲜有探索。为了解决这两个问题,我们使用了来自PhysioBank的99名健康参与者的EEG数据来研究多认知行为。具体而言,我们计算了EEG数据64个电极序列之间的符号转移熵(STE),并使用有向最小生成树(DMST)算法构建了每个参与者各种认知行为的大脑网络。然后,我们研究了每个个体认知行为的STE矩阵的特征值谱。结果还表明,同一参与者不同认知状态的谱分布相对稳定,但不同参与者相同认知状态的谱分布差异较大,这验证了人类大脑网络类似于人类指纹的相对稳定性和独特性。基于这些特征,我们将99名参与者各种认知状态的谱分布集作为原始数据集,并开发了一种谱分布集评分(SDSS)方法来识别大脑网络参与者。结果发现,得分最高的测试参与者的大多数标签(69.35%)与标记参与者相同。本研究为人类大脑指纹的存在提供了进一步的证据,并为大脑指纹的动态识别提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba5/7283910/f0739de917dc/fpsyg-11-01003-g0001.jpg

相似文献

1
Brain Network Constancy and Participant Recognition: an Integrated Approach to Big Data and Complex Network Analysis.
Front Psychol. 2020 Jun 3;11:1003. doi: 10.3389/fpsyg.2020.01003. eCollection 2020.
2
The research of constructing dynamic cognition model based on brain network.
Saudi J Biol Sci. 2017 Mar;24(3):548-555. doi: 10.1016/j.sjbs.2017.01.025. Epub 2017 Jan 24.
3
Construction and Application of Functional Brain Network Based on Entropy.
Entropy (Basel). 2020 Oct 30;22(11):1234. doi: 10.3390/e22111234.
4
Randomized EEG functional brain networks in major depressive disorders with greater resilience and lower rich-club coefficient.
Clin Neurophysiol. 2018 Apr;129(4):743-758. doi: 10.1016/j.clinph.2018.01.017. Epub 2018 Jan 31.
5
It's All About the Networks.
Epilepsy Curr. 2019 May-Jun;19(3):165-167. doi: 10.1177/1535759719843301. Epub 2019 Apr 29.
6
Comparison of data-driven thresholding methods using directed functional brain networks.
Rev Neurosci. 2024 Aug 30;36(2):119-138. doi: 10.1515/revneuro-2024-0020. Print 2025 Feb 25.
7
Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection.
Australas Phys Eng Sci Med. 2016 Sep;39(3):797-806. doi: 10.1007/s13246-016-0472-8. Epub 2016 Aug 22.
8
The minimum spanning tree: an unbiased method for brain network analysis.
Neuroimage. 2015 Jan 1;104:177-88. doi: 10.1016/j.neuroimage.2014.10.015. Epub 2014 Oct 16.
10
Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness.
Cogn Neurodyn. 2018 Dec;12(6):569-581. doi: 10.1007/s11571-018-9495-z. Epub 2018 Jul 14.

引用本文的文献

1
Research on China's Risk of Housing Price Contagion Based on Multilayer Networks.
Entropy (Basel). 2022 Sep 15;24(9):1305. doi: 10.3390/e24091305.

本文引用的文献

2
The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure.
Sci Rep. 2018 Feb 6;8(1):2507. doi: 10.1038/s41598-018-20123-8.
3
Alternating Dynamics of Segregation and Integration in Human EEG Functional Networks During Working-memory Task.
Neuroscience. 2018 Feb 10;371:191-206. doi: 10.1016/j.neuroscience.2017.12.004. Epub 2017 Dec 12.
4
Communication dynamics in complex brain networks.
Nat Rev Neurosci. 2017 Dec 14;19(1):17-33. doi: 10.1038/nrn.2017.149.
5
Brain network dynamics are hierarchically organized in time.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832. doi: 10.1073/pnas.1705120114. Epub 2017 Oct 30.
6
Cognitive task information is transferred between brain regions via resting-state network topology.
Nat Commun. 2017 Oct 18;8(1):1027. doi: 10.1038/s41467-017-01000-w.
7
Decreased Global Network Efficiency in Young Male Smoker: An EEG Study during the Resting State.
Front Psychol. 2017 Sep 15;8:1605. doi: 10.3389/fpsyg.2017.01605. eCollection 2017.
8
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
J Neurosci. 2017 Aug 30;37(35):8399-8411. doi: 10.1523/JNEUROSCI.0485-17.2017. Epub 2017 Jul 31.
9
On the Keyhole Hypothesis: High Mutual Information between Ear and Scalp EEG.
Front Hum Neurosci. 2017 Jun 30;11:341. doi: 10.3389/fnhum.2017.00341. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验