Suppr超能文献

生化网络中的竞争计算。

Computing with competition in biochemical networks.

机构信息

LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505, Japan.

出版信息

Phys Rev Lett. 2012 Nov 16;109(20):208102. doi: 10.1103/PhysRevLett.109.208102. Epub 2012 Nov 13.

Abstract

Cells rely on limited resources such as enzymes or transcription factors to process signals and make decisions. However, independent cellular pathways often compete for a common molecular resource. Competition is difficult to analyze because of its nonlinear global nature, and its role remains unclear. Here we show how decision pathways such as transcription networks may exploit competition to process information. Competition for one resource leads to the recognition of convex sets of patterns, whereas competition for several resources (overlapping or cascaded regulons) allows even more general pattern recognition. Competition also generates surprising couplings, such as correlating species that share no resource but a common competitor. The mechanism we propose relies on three primitives that are ubiquitous in cells: multiinput motifs, competition for a resource, and positive feedback loops.

摘要

细胞依赖于有限的资源,如酶或转录因子,来处理信号并做出决策。然而,独立的细胞通路经常为一个共同的分子资源而竞争。由于其非线性的全局性质,竞争很难分析,其作用仍然不清楚。在这里,我们展示了转录网络等决策途径如何利用竞争来处理信息。对一种资源的竞争导致对凸集模式的识别,而对几种资源的竞争(重叠或级联调节子)则允许更一般的模式识别。竞争也会产生令人惊讶的耦合,例如,共享同一资源但共同竞争者的物种之间的关联。我们提出的机制依赖于细胞中普遍存在的三个基本要素:多输入基序、资源竞争和正反馈回路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验