Suppr超能文献

哺乳动物细胞中的一种合成蛋白质水平神经网络。

A synthetic protein-level neural network in mammalian cells.

作者信息

Chen Zibo, Linton James M, Xia Shiyu, Fan Xinwen, Yu Dingchen, Wang Jinglin, Zhu Ronghui, Elowitz Michael B

机构信息

School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

出版信息

Science. 2024 Dec 13;386(6727):1243-1250. doi: 10.1126/science.add8468. Epub 2024 Dec 12.

Abstract

Artificial neural networks provide a powerful paradigm for nonbiological information processing. To understand whether similar principles could enable computation within living cells, we combined de novo-designed protein heterodimers and engineered viral proteases to implement a synthetic protein circuit that performs winner-take-all neural network classification. This "perceptein" circuit combines weighted input summation through reversible binding interactions with self-activation and mutual inhibition through irreversible proteolytic cleavage. These interactions collectively generate a large repertoire of distinct protein species stemming from up to eight coexpressed starting protein species. The complete system achieves multi-output signal classification with tunable decision boundaries in mammalian cells and can be used to conditionally control cell death. These results demonstrate how engineered protein-based networks can enable programmable signal classification in living cells.

摘要

人工神经网络为非生物信息处理提供了一个强大的范式。为了了解类似的原理是否能使活细胞内进行计算,我们将从头设计的蛋白质异二聚体和工程化病毒蛋白酶相结合,以实现一个执行胜者全得神经网络分类的合成蛋白质电路。这个“感知蛋白”电路通过可逆结合相互作用进行加权输入求和,并通过不可逆的蛋白水解切割实现自激活和相互抑制。这些相互作用共同产生了大量源自多达八种共表达起始蛋白种类的不同蛋白质种类。完整的系统在哺乳动物细胞中实现了具有可调决策边界的多输出信号分类,可用于有条件地控制细胞死亡。这些结果证明了基于工程蛋白的网络如何能够在活细胞中实现可编程信号分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b5c/11758091/f7be6b4cfaa1/nihms-2043306-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验