Suppr超能文献

贝叶斯网络虚拟筛选 CB(2) 受体激动剂和高通量对接:激动剂调节 G 蛋白偶联受体特征的结构见解。

Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features.

机构信息

Laboratoire de Chimie Thérapeutique, Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3 rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France.

出版信息

Chem Biol Drug Des. 2013 Apr;81(4):442-54. doi: 10.1111/cbdd.12095.

Abstract

The relevance of CB(2)-mediated therapeutics is well established in the treatment of pain, neurodegenerative and gastrointestinal tract disorders. Recent works such as the crystallization of class-A G-protein-coupled receptors in a range of active states and the identification of specific anchoring sites for CB(2) agonists challenged us to design a reliable agonist-bound homology model of CB(2) receptor. Docking-scoring enrichment tests of a high-throughput virtual screening of 140 compounds led to 13 hits within the micromolar affinity range. Most of these hits behaved as CB(2) agonists, among which two novel full agonists emerged. Although the main challenge was a high-throughput docking run targeting an agonist-bound state of a CB(2) model, a prior 2D ligand-based Bayesian network was computed to enrich the input commercial library for 3D screening. The exclusive discovery of agonists illustrates the reliability of this agonist-bound state model for the identification of polar and aromatic amino acids as new agonist-modulated CB(2) features to be integrated in the wide activation pathway of G-protein-coupled receptors.

摘要

在治疗疼痛、神经退行性和胃肠道疾病方面,CB(2)介导的治疗方法的相关性已得到充分证实。最近的一些工作,如一系列活性状态下的 A 类 G 蛋白偶联受体的结晶和 CB(2)激动剂的特定锚定位点的鉴定,促使我们设计了一种可靠的 CB(2)受体配体结合同源模型。对 140 种化合物进行高通量虚拟筛选的对接评分富集测试,在微摩尔亲和力范围内得到了 13 个命中化合物。这些命中化合物大多为 CB(2)激动剂,其中两种为新型完全激动剂。尽管主要的挑战是针对 CB(2)模型的配体结合状态进行高通量对接,但之前计算了基于配体的二维贝叶斯网络,以富集用于 3D 筛选的输入商业库。仅发现激动剂表明,这种配体结合状态模型对于鉴定极性和芳香族氨基酸作为新的激动剂调节的 CB(2)特征是可靠的,这些特征将被整合到 G 蛋白偶联受体的广泛激活途径中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验