University College London Genetics Institute, University College London, London WC1E 6BT, UK.
Am J Hum Genet. 2012 Dec 7;91(6):1011-21. doi: 10.1016/j.ajhg.2012.10.010.
Estimation of narrow-sense heritability, h(2), from genome-wide SNPs genotyped in unrelated individuals has recently attracted interest and offers several advantages over traditional pedigree-based methods. With the use of this approach, it has been estimated that over half the heritability of human height can be attributed to the ~300,000 SNPs on a genome-wide genotyping array. In comparison, only 5%-10% can be explained by SNPs reaching genome-wide significance. We investigated via simulation the validity of several key assumptions underpinning the mixed-model analysis used in SNP-based h(2) estimation. Although we found that the method is reasonably robust to violations of four key assumptions, it can be highly sensitive to uneven linkage disequilibrium (LD) between SNPs: contributions to h(2) are overestimated from causal variants in regions of high LD and are underestimated in regions of low LD. The overall direction of the bias can be up or down depending on the genetic architecture of the trait, but it can be substantial in realistic scenarios. We propose a modified kinship matrix in which SNPs are weighted according to local LD. We show that this correction greatly reduces the bias and increases the precision of h(2) estimates. We demonstrate the impact of our method on the first seven diseases studied by the Wellcome Trust Case Control Consortium. Our LD adjustment revises downward the h(2) estimate for immune-related diseases, as expected because of high LD in the major-histocompatibility region, but increases it for some nonimmune diseases. To calculate our revised kinship matrix, we developed LDAK, software for computing LD-adjusted kinships.
最近,从无亲缘关系个体中基因分型的全基因组 SNPs 估计狭义遗传率(h(2))引起了人们的兴趣,并且与传统的基于家系的方法相比具有多项优势。使用这种方法,已经估计出人类身高的遗传率超过一半可以归因于全基因组基因分型阵列上的约 30 万个 SNP。相比之下,只有 5%-10%可以用达到全基因组显著性的 SNP 来解释。我们通过模拟研究了 SNP 基础 h(2)估计中混合模型分析所依据的几个关键假设的有效性。尽管我们发现该方法对四个关键假设的违反具有相当的稳健性,但它对 SNP 之间不均匀的连锁不平衡(LD)非常敏感:在 LD 较高的区域中因果变异的 h(2)贡献被高估,而在 LD 较低的区域中被低估。偏倚的总体方向取决于性状的遗传结构,可以是向上或向下,但在现实情况下可能很大。我们提出了一种修改后的亲缘关系矩阵,其中 SNP 根据局部 LD 进行加权。我们表明,这种校正极大地减少了 h(2)估计的偏差并提高了精度。我们展示了我们的方法对 Wellcome Trust 病例对照联盟研究的前七种疾病的影响。我们的 LD 调整向下修正了与免疫相关的疾病的 h(2)估计值,这是由于主要组织相容性区域中的高 LD 所致,正如预期的那样,但增加了一些非免疫疾病的 h(2)估计值。为了计算我们的修正亲缘关系矩阵,我们开发了 LDAK,这是用于计算 LD 调整亲缘关系的软件。