Suppr超能文献

准确识别骨断端的体外鉴定:人体股骨近端失效机制。

Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur.

机构信息

Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy.

出版信息

J Biomech. 2013 Jan 4;46(1):158-64. doi: 10.1016/j.jbiomech.2012.11.013. Epub 2012 Dec 4.

Abstract

Bone fractures have extensively been investigated, especially for the proximal femur. While failure load can easily be recorded, and the fracture surface is readily accessible, identification of the point of fracture initiation is difficult. Accurate location of fracture initiation is extremely important to understand the multi-scale determinants of bone fracture. In this study, a recently developed technique based on electro-conductive lines was applied to the proximal femoral metaphysis to elucidate the fracture mechanism. Eight cadaveric femurs were prepared with 15-20 electro-conductive lines (crack-grid) covering the proximal region. The crack-grid was connected to a dedicated data-logger that monitored electrical continuity of each line at 700 kHz. High-speed videos (12,000 frames/s, 0.1-0.2 mm pixel size) of the destructive tests were acquired. Most crack-grid-lines failed in a time-span of 0.08-0.50 ms, which was comparable to that identified in the high-speed videos, and consistent with previous video recordings. However, on all specimens 1-3 crack-grid-lines failed significantly earlier (2-200 ms) than the majority of the crack-grid-lines. The first crack-grid-line to fail was always the closest one to the point of fracture initiation identified in the high-speed videos (superior-lateral neck region). Then the crack propagated simultaneously, at comparable velocity on the anterior and posterior sides of the neck. Such a failure pattern has never been observed before, as spatial resolution of the high-speed videos prevented from observing the initial opening of a crack. This mechanism (fracture onset, time-lag, followed by catastrophic failure) can be explained with a transfer of load to the internal trabecular structure caused by the initial fracture of the thin cortical shell. This study proves the suitability of the crack-grid method to investigate bone fractures associated to tensile stress. The crack-grid method enables significantly faster sampling than high-speed cameras. The present findings elucidate some aspects of the failure mechanism of the proximal human femoral metaphysis.

摘要

骨骨折已被广泛研究,尤其是对于股骨近端。虽然可以很容易地记录失效负载,并且很容易接近骨折面,但很难确定骨折起始点。准确确定骨折起始点对于理解骨骨折的多尺度决定因素非常重要。在这项研究中,应用了一种基于导电线的新技术来阐明股骨近端干骺端的骨折机制。准备了 8 个尸体股骨,在近端区域覆盖了 15-20 条导电线(裂纹网格)。裂纹网格连接到一个专用的数据记录器,该记录器以 700 kHz 的频率监测每条线的电连续性。获取破坏性测试的高速视频(12,000 帧/秒,0.1-0.2 毫米像素大小)。大多数裂纹网格线在 0.08-0.50 ms 的时间范围内失效,这与高速视频中识别的时间范围相当,并且与之前的视频记录一致。然而,在所有标本上,1-3 条裂纹网格线比大多数裂纹网格线更早(2-200 ms)失效。首先失效的裂纹网格线始终是距高速视频中识别的骨折起始点最近的线(上外侧颈部区域)。然后,裂纹以相似的速度在颈部的前后两侧同时扩展。这种失效模式以前从未观察到过,因为高速视频的空间分辨率阻止了观察裂纹的初始开口。这种机制(起始骨折、时滞、随后发生灾难性失效)可以通过初始薄皮质壳断裂引起的负荷转移到内部小梁结构来解释。这项研究证明了裂纹网格方法适用于研究与拉伸应力相关的骨骨折。与高速摄像机相比,裂纹网格方法可以实现更快的采样速度。本研究阐明了人类股骨近端干骺端失效机制的一些方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验