Department of Biomedical Engineering, The City College of New York of The City University of New York, NY, USA.
J Biomech. 2013 Jan 18;46(2):396-401. doi: 10.1016/j.jbiomech.2012.10.040. Epub 2012 Dec 6.
While it is generally accepted that ruptures in fibrous cap atheromas cause most acute coronary deaths, and that plaque rupture occurs in the fibrous cap at the location where the tissue stress exceeds a certain critical peak circumferential stress, the exact mechanism of rupture initiation remains unclear. We recently reported the presence of multiple microcalcifications (μCalcs) <50 μm diameter embedded within the fibrous cap, μCalcs that could greatly increase cap instability by introducing up to a 5-fold increase in local tissue stress. Here, we explore the hypothesis that, aside from cap thickness, μCalc size and interparticle spacing are principal determinants of cap rupture risk. Also, we propose that cap rupture is initiated near the poles of the μCalcs due to the presence of tiny voids that explosively grow at a critical tissue stress and then propagate across the fibrous cap. We develop a theoretical model based on classic studies in polymeric materials by Gent (1980), which indicates that cavitation as opposed to interfacial debonding is the more likely mechanism for cap rupture produced by μCalcs <65 μm diameter. This analysis suggests that there is a critical μCalc size range, from 5 μm to 65 μm, in which cavitation should be prevalent. This hypothesis for cap rupture is strongly supported by our latest high resolution μCT studies in which we have observed trapped voids in the vicinity of μCalcs within fibrous caps in human coronaries.
虽然普遍认为纤维帽粥样硬化斑块的破裂导致了大多数急性冠状动脉死亡,并且斑块破裂发生在组织应力超过一定临界周向应力的纤维帽处,但破裂的起始的确切机制仍不清楚。我们最近报道了存在多个直径 <50μm 的微钙化(μCalcs)嵌入纤维帽内,μCalcs 通过将局部组织应力增加多达 5 倍,从而极大地增加了帽的不稳定性。在这里,我们探讨了这样一种假设,除了帽的厚度外,μCalc 的大小和颗粒间的间距是帽破裂风险的主要决定因素。此外,我们提出帽的破裂是由于存在微小的空隙,这些空隙在临界组织应力下爆炸性地生长,然后在纤维帽中传播,从而在 μCalcs 的极处开始。我们基于 Gent(1980)在聚合材料中的经典研究开发了一个理论模型,该模型表明,与界面脱粘相比,空化是由 μCalcs <65μm 直径产生的帽破裂更可能的机制。这种分析表明,在 5μm 到 65μm 之间存在一个临界 μCalc 尺寸范围,在这个范围内应该普遍存在空化。我们最近在人类冠状动脉的纤维帽内观察到 μCalcs 附近的被困空隙的高分辨率 μCT 研究强烈支持了这种帽破裂假说。