Suppr超能文献

易损斑块破裂生物力学观点的演变:综述

Changing views of the biomechanics of vulnerable plaque rupture: a review.

作者信息

Cardoso Luis, Weinbaum Sheldon

机构信息

Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Ave, New York, NY, 10031, USA.

出版信息

Ann Biomed Eng. 2014 Feb;42(2):415-31. doi: 10.1007/s10439-013-0855-x. Epub 2013 Jul 11.

Abstract

This review examines changing perspectives on the biomechanics of vulnerable plaque rupture over the past 25 years from the first finite element analyses (FEA) showing that the presence of a lipid pool significantly increases the local tissue stress in the atheroma cap to the latest imaging and 3D FEA studies revealing numerous microcalcifications in the cap proper and a new paradigm for cap rupture. The first part of the review summarizes studies describing the role of the fibrous cap thickness, tissue properties, and lesion geometry as main determinants of the risk of rupture. Advantages and limitations of current imaging technologies for assessment of vulnerable plaques are also discussed. However, the basic paradoxes as to why ruptures frequently did not coincide with location of PCS and why caps >65 μm thickness could rupture at tissue stresses significantly below the 300 kPa critical threshold still remained unresolved. The second part of the review describes recent studies in the role of microcalcifications, their origin, shape, and clustering in explaining these unresolved issues including the actual mechanism of rupture due to the explosive growth of tiny voids (cavitation) in local regions of high stress concentration between closely spaced microinclusions oriented along their tensile axis.

摘要

本综述探讨了过去25年中对易损斑块破裂生物力学的观点变化,从首次有限元分析(FEA)显示脂质池的存在显著增加动脉粥样硬化帽中的局部组织应力,到最新的成像和三维有限元分析研究揭示帽本身存在大量微钙化以及帽破裂的新范式。综述的第一部分总结了描述纤维帽厚度、组织特性和病变几何形状作为破裂风险主要决定因素的研究。还讨论了当前用于评估易损斑块的成像技术的优缺点。然而,关于破裂为何常常与斑块破裂综合征(PCS)的位置不一致,以及为何厚度>65μm的帽在组织应力显著低于300kPa临界阈值时仍会破裂等基本矛盾问题仍未得到解决。综述的第二部分描述了近期关于微钙化的作用、其起源、形状和聚集的研究,这些研究解释了这些未解决的问题,包括由于沿其拉伸轴排列的紧密间隔微内含物之间高应力集中局部区域微小空隙(空化)的爆发性生长导致破裂的实际机制。

相似文献

1
Changing views of the biomechanics of vulnerable plaque rupture: a review.
Ann Biomed Eng. 2014 Feb;42(2):415-31. doi: 10.1007/s10439-013-0855-x. Epub 2013 Jul 11.
2
The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding.
J Biomech. 2013 Jan 18;46(2):396-401. doi: 10.1016/j.jbiomech.2012.10.040. Epub 2012 Dec 6.
4
A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.
Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H619-28. doi: 10.1152/ajpheart.00036.2012. Epub 2012 Jul 9.
5
Local characterization of collagen architecture and mechanical properties of tissue engineered atherosclerotic plaque cap analogs.
Acta Biomater. 2025 Mar 1;194:185-193. doi: 10.1016/j.actbio.2025.01.035. Epub 2025 Jan 22.
6
Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10741-6. doi: 10.1073/pnas.1308814110. Epub 2013 Jun 3.
7
Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture.
Adv Exp Med Biol. 2018;1097:129-155. doi: 10.1007/978-3-319-96445-4_7.
8
3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
Biomech Model Mechanobiol. 2012 Sep;11(7):1001-13. doi: 10.1007/s10237-011-0369-0. Epub 2012 Jan 7.
9
Size and proximity of micro-scale hard-inclusions increase the risk of rupture in fibroatheroma-like laboratory models.
J Mech Behav Biomed Mater. 2023 May;141:105749. doi: 10.1016/j.jmbbm.2023.105749. Epub 2023 Mar 6.

引用本文的文献

1
Impact of residual stress on coronary plaque stress/strain calculations using optical coherence tomography image-based multi-layer models.
Front Cardiovasc Med. 2024 Apr 25;11:1395257. doi: 10.3389/fcvm.2024.1395257. eCollection 2024.
2
Numerical analysis of blood flow through stenosed microvessels using a multi-phase model.
Heliyon. 2024 Apr 21;10(9):e29843. doi: 10.1016/j.heliyon.2024.e29843. eCollection 2024 May 15.
3
Coronary Artery Calcium Data and Reporting System (CAC-DRS): A Primer.
J Cardiovasc Imaging. 2023 Jan;31(1):1-17. doi: 10.4250/jcvi.2022.0029.
4
The Role of Inflammation in Cardiovascular Disease.
Int J Mol Sci. 2022 Oct 26;23(21):12906. doi: 10.3390/ijms232112906.
9
Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations.
Biomech Model Mechanobiol. 2021 Aug;20(4):1383-1397. doi: 10.1007/s10237-021-01450-8. Epub 2021 Mar 23.

本文引用的文献

1
Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10741-6. doi: 10.1073/pnas.1308814110. Epub 2013 Jun 3.
2
The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding.
J Biomech. 2013 Jan 18;46(2):396-401. doi: 10.1016/j.jbiomech.2012.10.040. Epub 2012 Dec 6.
3
A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.
Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H619-28. doi: 10.1152/ajpheart.00036.2012. Epub 2012 Jul 9.
4
Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling.
J Biomech. 2012 Mar 15;45(5):790-8. doi: 10.1016/j.jbiomech.2011.11.019. Epub 2012 Jan 10.
5
6
A classic collaboration: Michael Davies on plaque vulnerability.
Atherosclerosis. 2012 Feb;220(2):593-7. doi: 10.1016/j.atherosclerosis.2011.11.022. Epub 2011 Nov 23.
7
Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification.
Circ Res. 2011 May 27;108(11):1381-91. doi: 10.1161/CIRCRESAHA.110.234146.
8
Experimental determination of circumferential properties of fresh carotid artery plaques.
J Biomech. 2011 Jun 3;44(9):1709-15. doi: 10.1016/j.jbiomech.2011.03.033. Epub 2011 Apr 16.
9
Effects of intima stiffness and plaque morphology on peak cap stress.
Biomed Eng Online. 2011 Apr 8;10:25. doi: 10.1186/1475-925X-10-25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验