Suppr超能文献

生长素影响豌豆菌根共生中的独脚金内酯。

Auxin influences strigolactones in pea mycorrhizal symbiosis.

机构信息

School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.

出版信息

J Plant Physiol. 2013 Mar 15;170(5):523-8. doi: 10.1016/j.jplph.2012.11.002. Epub 2012 Dec 6.

Abstract

Hormone interactions are essential for the control of many developmental processes, including intracellular symbioses. The interaction between auxin and the new plant hormone strigolactone in the regulation of arbuscular mycorrhizal symbiosis was examined in one of the few auxin deficient mutants available in a mycorrhizal species, the auxin-deficient bsh mutant of pea (Pisum sativum). Mycorrhizal colonisation with the fungus Glomus intraradices was significantly reduced in the low auxin bsh mutant. The bsh mutant also exhibited a reduction in strigolactone exudation and the expression of a key strigolactone biosynthesis gene (PsCCD8). Strigolactone exudation was also reduced in wild type plants when the auxin content was reduced by stem girdling. Low strigolactone levels appear to be at least partially responsible for the reduced colonisation of the bsh mutant, as application of the synthetic strigolactone GR24 could partially rescue the mycorrhizal phenotype of bsh mutants. Data presented here indicates root auxin content was correlated with strigolactone exudation in both mutant and wild type plants. Mutant studies suggest that auxin may regulate early events in the formation of arbuscular mycorrhizal symbiosis by controlling strigolactone levels, both in the rhizosphere and possibly during early root colonisation.

摘要

激素相互作用对于许多发育过程的控制至关重要,包括细胞内共生。在少数几种共生菌可用的根瘤菌缺陷突变体之一豌豆(Pisum sativum)的生长素缺陷 bsh 突变体中,研究了生长素与新的植物激素独脚金内酯在调节丛枝菌根共生中的相互作用。与真菌 Glomus intraradices 的菌根定殖在低生长素 bsh 突变体中显著减少。bsh 突变体也表现出独脚金内酯分泌减少和关键独脚金内酯生物合成基因(PsCCD8)的表达减少。当通过茎环割降低生长素含量时,野生型植物中的独脚金内酯分泌也减少。低独脚金内酯水平似乎至少部分导致 bsh 突变体定殖减少,因为施用合成独脚金内酯 GR24 可以部分挽救 bsh 突变体的菌根表型。这里提出的数据表明,根生长素含量与突变体和野生型植物中独脚金内酯的分泌相关。突变体研究表明,生长素可能通过控制根际和可能在早期根定殖期间的独脚金内酯水平,调节丛枝菌根共生的早期事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验