Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.
Free Radic Biol Med. 2013 Mar;56:17-27. doi: 10.1016/j.freeradbiomed.2012.11.018. Epub 2012 Dec 5.
Heme synthesis partially occurs in the mitochondrial matrix; thus there is a high probability that enzymes and intermediates important in the production of heme will be exposed to metabolic by-products including reactive oxygen species. In addition, the need for ferrous iron for heme production, Fe/S coordination, and other processes occurring in the mitochondrial matrix suggests that aberrant fluxes of reactive oxygen species in this compartment might perturb normal iron homeostasis. Manganese superoxide dismutase (Sod2) is an antioxidant enzyme that governs steady-state levels of the superoxide in the mitochondrial matrix. Using hematopoietic stem cell-specific conditional Sod2 knockout mice we observed increased superoxide concentrations in red cell progeny, which caused significant pathologies including impaired erythrocytes and decreased ferrochelatase activity. Animals lacking Sod2 expression in erythroid precursors also displayed extramedullary hematopoiesis and systemic iron redistribution. Additionally, the increase in superoxide flux in erythroid precursors caused abnormal gene regulation of hematopoietic transcription factors, globins, and iron-response genes. Moreover, the erythroid precursors also displayed evidence of global changes in histone posttranslational modifications, a likely cause of at least some of the aberrant gene expression noted. From a therapeutic translational perspective, mitochondrially targeted superoxide-scavenging antioxidants partially rescued the observed phenotype. Taken together, our findings illuminate the superoxide sensitivity of normal iron homeostasis in erythrocyte precursors and suggest a probable link between mitochondrial redox metabolism and epigenetic control of nuclear gene regulation during mammalian erythropoiesis.
血红素的合成部分发生在线粒体基质中;因此,产生血红素的酶和中间产物很有可能暴露于代谢副产物中,包括活性氧。此外,由于血红素生成需要亚铁、Fe/S 协调以及线粒体基质中发生的其他过程,该隔室中活性氧的异常流动可能会扰乱正常的铁稳态。锰超氧化物歧化酶(Sod2)是一种抗氧化酶,可控制线粒体基质中超氧化物的稳态水平。使用造血干细胞特异性条件性 Sod2 敲除小鼠,我们观察到红细胞前体中超氧化物浓度增加,导致明显的病理学改变,包括红细胞受损和亚铁螯合酶活性降低。在红细胞前体中缺乏 Sod2 表达的动物也表现出骨髓外造血和全身铁重新分布。此外,红细胞前体中超氧化物通量的增加导致造血转录因子、珠蛋白和铁反应基因的异常基因调控。此外,红细胞前体还显示出组蛋白翻译后修饰的全局变化的证据,这可能是至少部分异常基因表达的原因之一。从治疗转化的角度来看,线粒体靶向的超氧化物清除抗氧化剂部分挽救了观察到的表型。总之,我们的研究结果阐明了正常红细胞前体中铁稳态对超氧化物的敏感性,并提示哺乳动物红细胞生成过程中线粒体氧化还原代谢与核基因调控的表观遗传控制之间可能存在联系。