Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
J Inorg Biochem. 2013 Feb;119:75-84. doi: 10.1016/j.jinorgbio.2012.10.015. Epub 2012 Nov 13.
Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships.
亚铁血红素蛋白(FHbs)是球蛋白超家族的成员,广泛分布于原核生物和真核生物中,这些生物被证明具有一氧化氮双加氧酶(NOD)活性。在原核生物中,如大肠杆菌,NOD 活性是一种防御机制,可防止宿主免疫系统的巨噬细胞在感染过程中释放一氧化氮。因此,FHbs 已经被深入研究,并且已经开发出几种药物来对抗感染过程。然而,参与 NOD 活性的蛋白质结构决定因素仍知之甚少。在这种情况下,本工作的目的是使用最先进的计算机模拟工具揭示 FHbs 结构动力学与功能关系的分子基础。为了实现这一目标,我们研究了决定 NOD 活性的三个关键过程,即 i)配体向活性位点的迁移 ii)配位氧的稳定化和 iii)蛋白质内电子转移(ET)。我们的结果确定了与所有三个过程相关的关键因素,例如配体迁移的长疏水隧道的存在、稳定配位氧的水介导氢键的存在,从而实现高亲和力,以及 FAD 和血红素之间的最佳 ET 路径,其中水分子起着重要作用。总之,所呈现的结果填补了我们对广泛多样的球蛋白结构-功能关系理解的重要空白。