Suppr超能文献

嗅球和梨状皮层的胆碱能调制模型。

A model of cholinergic modulation in olfactory bulb and piriform cortex.

机构信息

Dept. of Neurobiology and Behavior, Cornell Univ., Ithaca, NY 14853, USA.

出版信息

J Neurophysiol. 2013 Mar;109(5):1360-77. doi: 10.1152/jn.00577.2012. Epub 2012 Dec 5.

Abstract

In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity.

摘要

在这项工作中,我们通过计算模型研究了胆碱能输入对嗅球(OB)和梨状皮层(PC)如何调节气味表示。我们使用了来自不同生理研究的实验数据,这些研究涉及 ACh 对球和皮质电路的调制以及这两个区域之间的相互作用。这里呈现的结果表明,OB 中的胆碱能调制显著增加了嗅球细胞输出的对比度和同步性。这些效应中的每一个都源自不同的神经元相互作用,不同的中间神经元群体发挥不同的作用。OB 的调制效应都有助于在 PC 中产生更稳定的学习表示,与用未调制 OB 输入训练的锥体网络相比,用来自 OB 的胆碱能调制输入训练的锥体网络表现出更强的学习能力。这种增强的稳健性表现为更好地从损坏的模式和低浓度输入中恢复记忆以及增加记忆容量。

相似文献

1
A model of cholinergic modulation in olfactory bulb and piriform cortex.
J Neurophysiol. 2013 Mar;109(5):1360-77. doi: 10.1152/jn.00577.2012. Epub 2012 Dec 5.
2
Multiple and opposing roles of cholinergic transmission in the main olfactory bulb.
J Neurosci. 1999 Nov 1;19(21):9180-91. doi: 10.1523/JNEUROSCI.19-21-09180.1999.
3
Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.
J Neurophysiol. 2015 Dec;114(6):3177-200. doi: 10.1152/jn.00324.2015. Epub 2015 Sep 2.
4
Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.
J Neurosci. 2014 Aug 20;34(34):11244-60. doi: 10.1523/JNEUROSCI.1499-14.2014.
5
Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb.
J Neurosci. 2014 Mar 26;34(13):4654-64. doi: 10.1523/JNEUROSCI.5026-13.2014.
6
A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb.
J Neurosci. 2013 Feb 13;33(7):3037-58. doi: 10.1523/JNEUROSCI.2831-12.2013.
7
A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.
Front Neural Circuits. 2014 Feb 7;8:5. doi: 10.3389/fncir.2014.00005. eCollection 2014.
8
Cholinergic modulation of sensory representations in the olfactory bulb.
Neural Netw. 2002 Jun-Jul;15(4-6):709-17. doi: 10.1016/s0893-6080(02)00061-8.
9
Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
J Neurosci. 2020 Dec 2;40(49):9414-9425. doi: 10.1523/JNEUROSCI.0965-20.2020. Epub 2020 Oct 28.
10
Correlation-induced synchronization of oscillations in olfactory bulb neurons.
J Neurosci. 2006 Apr 5;26(14):3646-55. doi: 10.1523/JNEUROSCI.4605-05.2006.

引用本文的文献

1
Reinforced Odor Representations in the Anterior Olfactory Nucleus Can Serve as Memory Traces for Conspecifics.
eNeuro. 2025 Jul 28;12(7). doi: 10.1523/ENEURO.0143-25.2025. Print 2025 Jul.
3
Rapid online learning and robust recall in a neuromorphic olfactory circuit.
Nat Mach Intell. 2020 Mar;2(3):181-191. doi: 10.1038/s42256-020-0159-4. Epub 2020 Mar 16.
4
Basal Forebrain Modulation of Olfactory Coding .
Int J Psychol Res (Medellin). 2023 Oct 10;16(2):62-86. doi: 10.21500/20112084.6486. eCollection 2023 Jul-Dec.
6
Reciprocal relationships between sleep and smell.
Front Neural Circuits. 2022 Dec 22;16:1076354. doi: 10.3389/fncir.2022.1076354. eCollection 2022.
7
The Response Dynamics and Function of Cholinergic and GABAergic Neurons in the Basal Forebrain During Olfactory Learning.
Front Cell Neurosci. 2022 Jul 27;16:911439. doi: 10.3389/fncel.2022.911439. eCollection 2022.
9
Experience enhances certainty about olfactory stimuli under bulbar cholinergic control.
Learn Mem. 2020 Sep 15;27(10):414-417. doi: 10.1101/lm.051854.120. Print 2020 Oct.
10
Input dependent modulation of olfactory bulb activity by HDB GABAergic projections.
Sci Rep. 2020 Jul 1;10(1):10696. doi: 10.1038/s41598-020-67276-z.

本文引用的文献

2
Precise olfactory responses tile the sniff cycle.
Nat Neurosci. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877.
3
Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex.
Neuron. 2011 Apr 14;70(1):82-94. doi: 10.1016/j.neuron.2011.02.047.
4
Decorrelation of Odor Representations via Spike Timing-Dependent Plasticity.
Front Comput Neurosci. 2010 Dec 28;4:157. doi: 10.3389/fncom.2010.00157. eCollection 2010.
6
Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb.
Neuron. 2010 Nov 4;68(3):570-85. doi: 10.1016/j.neuron.2010.09.040.
7
Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse.
Nat Neurosci. 2010 Nov;13(11):1404-12. doi: 10.1038/nn.2673. Epub 2010 Oct 17.
8
Differential axonal projection of mitral and tufted cells in the mouse main olfactory system.
Front Neural Circuits. 2010 Sep 23;4. doi: 10.3389/fncir.2010.00120. eCollection 2010.
10
Odor representations in mammalian cortical circuits.
Curr Opin Neurobiol. 2010 Jun;20(3):328-31. doi: 10.1016/j.conb.2010.02.004. Epub 2010 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验