Suppr超能文献

干扰粒子与 HIV-1 保持共适应稳定性的设计要求。

Design requirements for interfering particles to maintain coadaptive stability with HIV-1.

机构信息

The Gladstone Institutes, San Francisco, California, USA.

出版信息

J Virol. 2013 Feb;87(4):2081-93. doi: 10.1128/JVI.02741-12. Epub 2012 Dec 5.

Abstract

Defective interfering particles (DIPs) are viral deletion mutants lacking essential transacting or packaging elements and must be complemented by wild-type virus to propagate. DIPs transmit through human populations, replicating at the expense of the wild-type virus and acting as molecular parasites of viruses. Consequently, engineered DIPs have been proposed as therapies for a number of diseases, including human immunodeficiency virus (HIV). However, it is not clear if DIP-based therapies would face evolutionary blocks given the high mutation rates and high within-host diversity of lentiviruses. Divergent evolution of HIV and DIPs appears likely since natural DIPs have not been detected for lentiviruses, despite extensive sequencing of HIVs and simian immunodeficiency viruses (SIVs). Here, we tested if the apparent lack of lentiviral DIPs is due to natural selection and analyzed which molecular characteristics a DIP or DIP-based therapy would need to maintain coadaptive stability with HIV-1. Using a well-established mathematical model of HIV-1 in a host extended to include its replication in a single cell and interference from DIP, we calculated evolutionary selection coefficients. The analysis predicts that interference by codimerization between DIPs and HIV-1 genomes is evolutionarily unstable, indicating that recombination between DIPs and HIV-1 would be selected against. In contrast, DIPs that interfere via competition for capsids have the potential to be evolutionarily stable if the capsid-to-genome production ratio of HIV-1 is >1. Thus, HIV-1 variants that attempt to "starve" DIPs to escape interference would be selected against. In summary, the analysis suggests specific experimental measurements that could address the apparent lack of naturally occurring lentiviral DIPs and specifies how therapeutic approaches based on engineered DIPs could be evolutionarily robust and avoid recombination.

摘要

缺陷干扰颗粒(DIPs)是缺乏必需的反式作用或包装元件的病毒缺失突变体,必须通过野生型病毒来补充才能繁殖。DIPs 通过人群传播,以牺牲野生型病毒为代价进行复制,并作为病毒的分子寄生虫。因此,工程 DIP 已被提议作为许多疾病的治疗方法,包括人类免疫缺陷病毒(HIV)。然而,鉴于慢病毒的高突变率和宿主内多样性,基于 DIP 的治疗方法是否会面临进化障碍尚不清楚。HIV 和 DIP 的分歧进化似乎是可能的,因为尽管对 HIV 和猴免疫缺陷病毒(SIV)进行了广泛的测序,但尚未检测到慢病毒的天然 DIP。在这里,我们测试了慢病毒 DIP 的明显缺乏是否是由于自然选择,并分析了 DIP 或基于 DIP 的治疗方法需要保持与 HIV-1 共适应稳定性所需的分子特征。我们使用一种已建立的 HIV-1 宿主的数学模型,该模型扩展到包括其在单个细胞中的复制和 DIP 的干扰,计算了进化选择系数。分析预测,DIP 与 HIV-1 基因组之间的二聚化干扰在进化上是不稳定的,这表明 DIP 与 HIV-1 之间的重组将受到选择的抵制。相比之下,如果 HIV-1 的衣壳到基因组产生比大于 1,则通过竞争衣壳干扰的 DIP 具有进化稳定的潜力。因此,试图通过“饥饿”DIP 来逃避干扰的 HIV-1 变体将受到选择的抵制。总之,该分析提出了具体的实验测量方法,可以解决自然发生的慢病毒 DIP 明显缺乏的问题,并指定了基于工程 DIP 的治疗方法如何在进化上具有稳健性并避免重组。

相似文献

1
Design requirements for interfering particles to maintain coadaptive stability with HIV-1.
J Virol. 2013 Feb;87(4):2081-93. doi: 10.1128/JVI.02741-12. Epub 2012 Dec 5.
2
High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles.
J Virol. 2015 Nov 25;90(3):1599-612. doi: 10.1128/JVI.02190-15. Print 2016 Feb 1.
3
Modeling the intracellular replication of influenza A virus in the presence of defective interfering RNAs.
Virus Res. 2016 Feb 2;213:90-99. doi: 10.1016/j.virusres.2015.11.016. Epub 2015 Nov 23.
5
Multiple-hit inhibition of infection by defective interfering particles.
J Gen Virol. 2009 Apr;90(Pt 4):888-899. doi: 10.1099/vir.0.005249-0. Epub 2009 Mar 4.
9
Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles.
Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8685-9. doi: 10.1073/pnas.91.18.8685.
10
Impact of defective interfering particles on virus replication and antiviral host response in cell culture-based influenza vaccine production.
Appl Microbiol Biotechnol. 2014 Nov;98(21):8999-9008. doi: 10.1007/s00253-014-5933-y. Epub 2014 Aug 19.

引用本文的文献

1
Exploiting social traits for clinical applications in bacteria and viruses.
NPJ Antimicrob Resist. 2025 Mar 28;3(1):20. doi: 10.1038/s44259-025-00091-6.
2
Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates.
Science. 2024 Aug 9;385(6709):eadn5866. doi: 10.1126/science.adn5866.
3
Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies.
Commun Med (Lond). 2023 Jun 19;3(1):86. doi: 10.1038/s43856-023-00320-x.
5
Identification of a therapeutic interfering particle-A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance.
Cell. 2021 Dec 9;184(25):6022-6036.e18. doi: 10.1016/j.cell.2021.11.004. Epub 2021 Nov 10.
6
Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome.
PLoS Pathog. 2021 Sep 27;17(9):e1009277. doi: 10.1371/journal.ppat.1009277. eCollection 2021 Sep.
7
An evolution-based high-fidelity method of epistasis measurement: Theory and application to influenza.
PLoS Pathog. 2021 Jun 21;17(6):e1009669. doi: 10.1371/journal.ppat.1009669. eCollection 2021 Jun.
8
The evolutionary origin of the universal distribution of mutation fitness effect.
PLoS Comput Biol. 2021 Mar 8;17(3):e1008822. doi: 10.1371/journal.pcbi.1008822. eCollection 2021 Mar.
10
Defective viral genomes are key drivers of the virus-host interaction.
Nat Microbiol. 2019 Jul;4(7):1075-1087. doi: 10.1038/s41564-019-0465-y. Epub 2019 Jun 3.

本文引用的文献

1
Evolutionary analysis of human immunodeficiency virus type 1 therapies based on conditionally replicating vectors.
PLoS Comput Biol. 2012;8(10):e1002744. doi: 10.1371/journal.pcbi.1002744. Epub 2012 Oct 25.
3
Majority of CD4+ T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11199-204. doi: 10.1073/pnas.1107729108. Epub 2011 Jun 20.
4
Defective interfering viral particles in acute dengue infections.
PLoS One. 2011 Apr 29;6(4):e19447. doi: 10.1371/journal.pone.0019447.
5
Evolution of drug-resistant viral populations during interruption of antiretroviral therapy.
J Virol. 2011 Jul;85(13):6403-15. doi: 10.1128/JVI.02389-10. Epub 2011 Apr 13.
6
Autonomous targeting of infectious superspreaders using engineered transmissible therapies.
PLoS Comput Biol. 2011 Mar;7(3):e1002015. doi: 10.1371/journal.pcbi.1002015. Epub 2011 Mar 17.
7
A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase.
Nat Genet. 2011 May;43(5):487-9. doi: 10.1038/ng.795. Epub 2011 Mar 27.
8
Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5661-6. doi: 10.1073/pnas.1102036108. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验