Vora Kevin, Kang SeungYeon, Mazur Eric
School of Engineering and Applied Sciences, Harvard University, MA, USA.
J Vis Exp. 2012 Nov 27(69):e4399. doi: 10.3791/4399.
The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can form structures in the bulk of a material rather than on its surface. Most work on 3D direct metal writing has focused on creating self-supported metal structures.(14-16) The method described here yields sub-micrometer silver structures that do not need to be self-supported because they are embedded inside a matrix. A doped polymer matrix is prepared using a mixture of silver nitrate (AgNO3), polyvinylpyrrolidone (PVP) and water (H2O). Samples are then patterned by irradiation with an 11-MHz femtosecond laser producing 50-fs pulses. During irradiation, photoreduction of silver ions is induced through nonlinear absorption, creating an aggregate of silver nanoparticles in the focal region. Using this approach we create silver patterns embedded in a doped PVP matrix. Adding 3D translation of the sample extends the patterning to three dimensions.
标准的纳米制造工具包包括主要用于在介电介质中创建二维图案的技术。在亚微米尺度上创建金属图案需要结合纳米制造工具和几个材料加工步骤。例如,使用紫外光刻和电子束光刻创建平面金属结构的步骤可以包括样品曝光、样品显影、金属沉积和金属剥离。要创建三维金属结构,则需重复该序列多次。多层堆叠和对齐的复杂性和难度限制了使用标准纳米制造工具进行三维金属结构化的实际应用。飞秒激光直写已成为三维纳米制造的卓越技术。(1,2)飞秒激光经常用于在聚合物和玻璃中创建三维图案。(3 - 7)然而,三维金属直写仍然是一个挑战。在这里,我们描述了一种使用中心波长为800 nm的飞秒激光制造嵌入聚合物基质中的银纳米结构的方法。该方法能够制造出使用其他技术无法实现的图案,例如不相连的银体素的三维阵列。(8)不相连的三维金属图案对于单元胞不相互接触的超材料很有用,(9)例如耦合金属点(10,11)或耦合金属棒(12,13)谐振器。潜在应用包括负折射率超材料、隐形斗篷和完美透镜。在飞秒激光直写中,选择激光波长使得光子不会在目标介质中被线性吸收。当激光脉冲持续时间被压缩到飞秒时间尺度并且辐射在目标内部被紧密聚焦时,极高的强度会引起非线性吸收。多个光子同时被吸收以引起电子跃迁,从而导致聚焦区域内的材料改性。使用这种方法,可以在材料内部而不是其表面形成结构。大多数关于三维直接金属写入的工作都集中在创建自支撑金属结构上。(14 - 16)这里描述的方法产生的亚微米级银结构不需要自支撑,因为它们嵌入在基质中。使用硝酸银(AgNO3)、聚乙烯吡咯烷酮(PVP)和水(H2O)的混合物制备掺杂的聚合物基质。然后用产生50飞秒脉冲的11兆赫飞秒激光照射样品进行图案化。在照射过程中,通过非线性吸收诱导银离子的光还原,在焦点区域形成银纳米颗粒的聚集体。使用这种方法,我们创建了嵌入掺杂PVP基质中的银图案。添加样品的三维平移将图案化扩展到三维。