Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
J Bacteriol. 2013 Feb;195(4):833-43. doi: 10.1128/JB.02042-12. Epub 2012 Dec 7.
Sucrose is perhaps the most efficient carbohydrate for the promotion of dental caries in humans, and the primary caries pathogen Streptococcus mutans encodes multiple enzymes involved in the metabolism of this disaccharide. Here, we engineered a series of mutants lacking individual or combinations of sucrolytic pathways to understand the control of sucrose catabolism and to determine whether as-yet-undisclosed pathways for sucrose utilization were present in S. mutans. Growth phenotypes indicated that gtfBCD (encoding glucan exopolysaccharide synthases), ftf (encoding the fructan exopolysaccharide synthase), and the scrAB pathway (sugar-phosphotransferase system [PTS] permease and sucrose-6-PO(4) hydrolase) constitute the majority of the sucrose-catabolizing activity; however, mutations in any one of these genes alone did not affect planktonic growth on sucrose. The multiple-sugar metabolism pathway (msm) contributed minimally to growth on sucrose. Notably, a mutant lacking gtfBC, which cannot produce water-insoluble glucan, displayed improved planktonic growth on sucrose. Meanwhile, loss of scrA led to growth stimulation on fructooligosaccharides, due in large part to increased expression of the fruAB (fructanase) operon. Using the LevQRST four-component signal transduction system as a model for carbohydrate-dependent gene expression in strains lacking extracellular sucrases, a PlevD-cat (EIIA(Lev)) reporter was activated by pulsing with sucrose. Interestingly, ScrA was required for activation of levD expression by sucrose through components of the LevQRST complex, but not for activation by the cognate LevQRST sugars fructose or mannose. Sucrose-dependent catabolite repression was also evident in strains containing an intact sucrose PTS. Collectively, these results reveal a novel regulatory circuitry for the control of sucrose catabolism, with a central role for ScrA.
蔗糖可能是促进人类龋齿最有效的碳水化合物,主要致龋菌变形链球菌编码多种参与该二糖代谢的酶。在这里,我们构建了一系列缺失单个或多个蔗糖分解途径的突变体,以了解蔗糖分解代谢的控制,并确定变形链球菌中是否存在尚未发现的蔗糖利用途径。生长表型表明,gtfBCD(编码葡聚糖胞外多糖合成酶)、ftf(编码果聚糖胞外多糖合成酶)和 scrAB 途径(糖磷酸转移酶系统 [PTS] 透性酶和蔗糖-6-PO(4)水解酶)构成了蔗糖分解活性的大部分;然而,这些基因中的任何一个单独突变都不会影响浮游生物在蔗糖上的生长。多糖代谢途径(msm)对蔗糖生长的贡献最小。值得注意的是,缺失 gtfBC 的突变体不能产生不溶于水的葡聚糖,在蔗糖上的浮游生物生长得到改善。同时,scrA 的缺失导致在果寡糖上的生长刺激,这在很大程度上是由于 fruAB(果聚糖酶)操纵子的表达增加。利用 LevQRST 四元信号转导系统作为缺乏细胞外蔗糖酶的菌株中碳水化合物依赖基因表达的模型,使用 PlevD-cat(EIIA(Lev)) 报告基因,蔗糖脉冲可激活其表达。有趣的是,蔗糖通过 LevQRST 复合物的成分激活 levD 表达需要 ScrA,但不需要通过其同源 LevQRST 糖果糖或甘露糖激活。在含有完整蔗糖 PTS 的菌株中也观察到蔗糖依赖性分解代谢物阻遏。总的来说,这些结果揭示了蔗糖分解代谢控制的新调控回路,其中 ScrA 起核心作用。