Suppr超能文献

全面分析变异链球菌蔗糖代谢途径揭示了蔗糖磷酸转移酶系统通透酶的新作用。

Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease.

机构信息

Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.

出版信息

J Bacteriol. 2013 Feb;195(4):833-43. doi: 10.1128/JB.02042-12. Epub 2012 Dec 7.

Abstract

Sucrose is perhaps the most efficient carbohydrate for the promotion of dental caries in humans, and the primary caries pathogen Streptococcus mutans encodes multiple enzymes involved in the metabolism of this disaccharide. Here, we engineered a series of mutants lacking individual or combinations of sucrolytic pathways to understand the control of sucrose catabolism and to determine whether as-yet-undisclosed pathways for sucrose utilization were present in S. mutans. Growth phenotypes indicated that gtfBCD (encoding glucan exopolysaccharide synthases), ftf (encoding the fructan exopolysaccharide synthase), and the scrAB pathway (sugar-phosphotransferase system [PTS] permease and sucrose-6-PO(4) hydrolase) constitute the majority of the sucrose-catabolizing activity; however, mutations in any one of these genes alone did not affect planktonic growth on sucrose. The multiple-sugar metabolism pathway (msm) contributed minimally to growth on sucrose. Notably, a mutant lacking gtfBC, which cannot produce water-insoluble glucan, displayed improved planktonic growth on sucrose. Meanwhile, loss of scrA led to growth stimulation on fructooligosaccharides, due in large part to increased expression of the fruAB (fructanase) operon. Using the LevQRST four-component signal transduction system as a model for carbohydrate-dependent gene expression in strains lacking extracellular sucrases, a PlevD-cat (EIIA(Lev)) reporter was activated by pulsing with sucrose. Interestingly, ScrA was required for activation of levD expression by sucrose through components of the LevQRST complex, but not for activation by the cognate LevQRST sugars fructose or mannose. Sucrose-dependent catabolite repression was also evident in strains containing an intact sucrose PTS. Collectively, these results reveal a novel regulatory circuitry for the control of sucrose catabolism, with a central role for ScrA.

摘要

蔗糖可能是促进人类龋齿最有效的碳水化合物,主要致龋菌变形链球菌编码多种参与该二糖代谢的酶。在这里,我们构建了一系列缺失单个或多个蔗糖分解途径的突变体,以了解蔗糖分解代谢的控制,并确定变形链球菌中是否存在尚未发现的蔗糖利用途径。生长表型表明,gtfBCD(编码葡聚糖胞外多糖合成酶)、ftf(编码果聚糖胞外多糖合成酶)和 scrAB 途径(糖磷酸转移酶系统 [PTS] 透性酶和蔗糖-6-PO(4)水解酶)构成了蔗糖分解活性的大部分;然而,这些基因中的任何一个单独突变都不会影响浮游生物在蔗糖上的生长。多糖代谢途径(msm)对蔗糖生长的贡献最小。值得注意的是,缺失 gtfBC 的突变体不能产生不溶于水的葡聚糖,在蔗糖上的浮游生物生长得到改善。同时,scrA 的缺失导致在果寡糖上的生长刺激,这在很大程度上是由于 fruAB(果聚糖酶)操纵子的表达增加。利用 LevQRST 四元信号转导系统作为缺乏细胞外蔗糖酶的菌株中碳水化合物依赖基因表达的模型,使用 PlevD-cat(EIIA(Lev)) 报告基因,蔗糖脉冲可激活其表达。有趣的是,蔗糖通过 LevQRST 复合物的成分激活 levD 表达需要 ScrA,但不需要通过其同源 LevQRST 糖果糖或甘露糖激活。在含有完整蔗糖 PTS 的菌株中也观察到蔗糖依赖性分解代谢物阻遏。总的来说,这些结果揭示了蔗糖分解代谢控制的新调控回路,其中 ScrA 起核心作用。

相似文献

2
Coordinated Regulation of the EII and Operons of Streptococcus mutans by Global and Fructose-Specific Pathways.
Appl Environ Microbiol. 2017 Oct 17;83(21). doi: 10.1128/AEM.01403-17. Print 2017 Nov 1.
3
Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.
Mol Microbiol. 2008 Oct;70(1):197-208. doi: 10.1111/j.1365-2958.2008.06403.x. Epub 2008 Aug 11.
5
Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate.
Microbiology (Reading). 2001 Oct;147(Pt 10):2841-2848. doi: 10.1099/00221287-147-10-2841.
6
Preferred Hexoses Influence Long-Term Memory in and Induction of Lactose Catabolism by Streptococcus mutans.
Appl Environ Microbiol. 2018 Jul 2;84(14). doi: 10.1128/AEM.00864-18. Print 2018 Jul 15.
7
Transport of sugars, including sucrose, by the msm transport system of Streptococcus mutans.
J Dent Res. 1993 Oct;72(10):1386-90. doi: 10.1177/00220345930720100701.
10
Construction of scrA::lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans.
FEMS Microbiol Lett. 1991 Apr 15;63(2-3):339-45. doi: 10.1111/j.1574-6968.1991.tb04552.x.

引用本文的文献

1
Fructose activates a stress response shared by methylglyoxal and hydrogen peroxide in .
mBio. 2025 May 14;16(5):e0048525. doi: 10.1128/mbio.00485-25. Epub 2025 Apr 17.
3
Utilization of carbon catabolite repression for efficiently biotransformation of anthraquinone O-glucuronides by DM.
Front Microbiol. 2024 Apr 16;15:1393073. doi: 10.3389/fmicb.2024.1393073. eCollection 2024.
4
Genetic characterization of glyoxalase pathway in oral streptococci and its contribution to interbacterial competition.
J Oral Microbiol. 2024 Mar 3;16(1):2322241. doi: 10.1080/20002297.2024.2322241. eCollection 2024.
5
Anti-cariogenic Properties of in the Utilization of Galacto-Oligosaccharide.
Nutrients. 2023 Apr 22;15(9):2017. doi: 10.3390/nu15092017.
6
Inhibition of biofilm formation and virulence factors of cariogenic oral pathogen by natural flavonoid phloretin.
J Oral Microbiol. 2023 Jul 3;15(1):2230711. doi: 10.1080/20002297.2023.2230711. eCollection 2023.
7
Roles of - interaction in early childhood caries: a literature review.
Front Cell Infect Microbiol. 2023 May 16;13:1151532. doi: 10.3389/fcimb.2023.1151532. eCollection 2023.
8
Effect of Probiotic on and Clinical Isolates from Children with Early Childhood Caries.
Int J Mol Sci. 2023 Feb 3;24(3):2991. doi: 10.3390/ijms24032991.
9
Effect of Nystatin on Candida albicans - Streptococcus mutans duo-species biofilms.
Arch Oral Biol. 2023 Jan;145:105582. doi: 10.1016/j.archoralbio.2022.105582. Epub 2022 Nov 9.
10
Dual transcriptome of and interplay in biofilms.
J Oral Microbiol. 2022 Nov 9;15(1):2144047. doi: 10.1080/20002297.2022.2144047. eCollection 2023.

本文引用的文献

1
The ABC transporter MalFGK(2) sequesters the MalT transcription factor at the membrane in the absence of cognate substrate.
Mol Microbiol. 2012 Aug;85(4):632-47. doi: 10.1111/j.1365-2958.2012.08137.x. Epub 2012 Jul 10.
5
Natural transformation of oral streptococci.
Methods Mol Biol. 2010;666:167-80. doi: 10.1007/978-1-60761-820-1_12.
7
Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
J Bacteriol. 2010 May;192(9):2434-44. doi: 10.1128/JB.01624-09. Epub 2010 Feb 26.
8
AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine.
Appl Environ Microbiol. 2009 May;75(9):2629-37. doi: 10.1128/AEM.02145-08. Epub 2009 Mar 6.
9
Transcriptional regulation of the cellobiose operon of Streptococcus mutans.
J Bacteriol. 2009 Apr;191(7):2153-62. doi: 10.1128/JB.01641-08. Epub 2009 Jan 23.
10
Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.
Mol Microbiol. 2008 Oct;70(1):197-208. doi: 10.1111/j.1365-2958.2008.06403.x. Epub 2008 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验