Estrada Javier, Guantes Raúl
Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Mol Biosyst. 2013 Feb 2;9(2):268-84. doi: 10.1039/c2mb25243k. Epub 2012 Dec 6.
Regulatory networks are able to process complex signals and respond appropriately to the cellular context. Thus, an increasing effort by systems biology researchers is being focused on understanding which interactions are responsible for a given functional response. When translated into specific mathematical models, however, it has been repeatedly shown that this mapping between topology and function is not one-to-one, even for the simplest networks. Moreover, dynamical behavior may play an important role which is necessary to integrate in the general picture. We propose a unified theoretical/statistical approach to characterize the structure-function relationship in molecular networks when temporal features of both input signal and output response are important. The theory allows fast computation of network responses in terms of interaction strengths irrespective of molecular details, while statistical analysis identifies constraints between structural and dynamical features and network function. Investigating different feedback and feedforward loop architectures, we find that processing of temporal signals is strongly correlated to certain combinations of structural and dynamical characteristics, rather than to individual interactions. Our analysis offers new insight into the structure-function relationship in network motifs, quantifying how much the tuning of specific interactions affects network outcome, identifying key structural parameters for a given response and relating dynamics to network topology and function. This kind of analyses can be especially useful for synthetic biology approaches, where promoter libraries with a range of inputs and outputs can be engineered, and one has to choose the correct component needed to produce the desired network function.
调控网络能够处理复杂信号并根据细胞环境做出适当反应。因此,系统生物学研究人员越来越致力于理解哪些相互作用导致特定的功能反应。然而,当转化为具体的数学模型时,反复表明即使对于最简单的网络,拓扑结构与功能之间的这种映射也不是一一对应的。此外,动力学行为可能起着重要作用,而这在整体情况中是需要整合进去的。我们提出一种统一的理论/统计方法,用于在输入信号和输出反应的时间特征都很重要时,刻画分子网络中的结构-功能关系。该理论允许根据相互作用强度快速计算网络反应,而无需考虑分子细节,同时统计分析确定结构和动力学特征与网络功能之间的限制关系。通过研究不同的反馈和前馈环结构,我们发现时间信号的处理与结构和动力学特征的某些组合密切相关,而不是与单个相互作用相关。我们的分析为网络基序中的结构-功能关系提供了新的见解,量化了特定相互作用的调整对网络结果的影响程度,确定了给定反应的关键结构参数,并将动力学与网络拓扑结构和功能联系起来。这种分析对于合成生物学方法可能特别有用,在合成生物学中,可以构建具有一系列输入和输出的启动子文库,并且必须选择产生所需网络功能所需的正确组件。