Skourtis Spiros S, Prytkova Tatiana, Beratan David N
Department of Physics, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus.
AIP Conf Proc. 2007;963:674-677. doi: 10.1063/1.2836174.
This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH(-)-containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH(-), upon photo-excitation of FADH(-) with 350-450 nm light. We compute the lowest singlet excited states of FADH(-) in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH(-) that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron- acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH(-) - thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH(-) causes a π → π(*) charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH(-) - to - dimer electronic coupling, thus inducing rapid electron transfer.
本论文描述了对DNA光解酶中初级光诱导电子转移反应的分子动力学、半经验和从头算研究。DNA光解酶是含FADH(-)的蛋白质,通过光诱导电子转移修复紫外线损伤的DNA。DNA光解酶识别并结合DNA的环丁烷嘧啶二聚体损伤。在350 - 450 nm光对FADH(-)进行光激发后,该蛋白质通过将电子从FADH(-)转移到损伤部位来修复结合的损伤。我们使用INDO/S组态相互作用、含时密度泛函和含时Hartree - Fock方法计算了DNA光解酶中FADH(-)的最低单重激发态。计算确定了光激发后占据的FADH(-)的最低单重激发态,其作为电子供体。对于这个供体态,我们计算了与结合到光解酶上的胸腺嘧啶二聚体的空电子受体态的构象平均隧穿矩阵元。构象平均涉及从溶剂化蛋白质与对接在其活性位点的胸腺嘧啶二聚体的分子动力学模拟中获得的不同FADH(-)-胸腺嘧啶二聚体构象。隧穿矩阵元计算使用INDO/S水平的格林函数、能量分裂和广义Mulliken - Hush方法。这些计算表明,FADH(-)的光激发导致π→π(*)电荷转移跃迁,将电子密度转移到黄素异咯嗪环与对接的胸腺嘧啶二聚体相邻的一侧。这种电子密度的转移增强了FADH(-)到二聚体的电子耦合,从而诱导快速电子转移。