Suppr超能文献

引导沿移动轨迹运动的电子。

Steering electrons on moving pathways.

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

出版信息

Acc Chem Res. 2009 Oct 20;42(10):1669-78. doi: 10.1021/ar900123t.

Abstract

Electron transfer (ET) reactions provide a nexus among chemistry, biochemistry, and physics. These reactions underpin the "power plants" and "power grids" of bioenergetics, and they challenge us to understand how evolution manipulates structure to control ET kinetics. Ball-and-stick models for the machinery of electron transfer, however, fail to capture the rich electronic and nuclear dynamics of ET molecules: these static representations disguise, for example, the range of thermally accessible molecular conformations. The influence of structural fluctuations on electron-transfer kinetics is amplified by the exponential decay of electron tunneling probabilities with distance, as well as the delicate interference among coupling pathways. Fluctuations in the surrounding medium can also switch transport between coherent and incoherent ET mechanisms--and may gate ET so that its kinetics is limited by conformational interconversion times, rather than by the intrinsic ET time scale. Moreover, preparation of a charge-polarized donor state or of a donor state with linear or angular momentum can have profound dynamical and kinetic consequences. In this Account, we establish a vocabulary to describe how the conformational ensemble and the prepared donor state influence ET kinetics in macromolecules. This framework is helping to unravel the richness of functional biological ET pathways, which have evolved within fluctuating macromolecular structures. The conceptual framework for describing nonadiabatic ET seems disarmingly simple: compute the ensemble-averaged (mean-squared) donor-acceptor (DA) tunneling interaction, <H(DA)(2)>, and the Franck-Condon weighted density of states, rho(FC), to describe the rate, (2pi/variant Planck's over 2pi)<H(DA)(2)>rho(FC). Modern descriptions of the thermally averaged electronic coupling and of the Franck-Condon factor establish a useful predictive framework in biology, chemistry, and nanoscience. Describing the influence of geometric and energetic fluctuations on ET allows us to address a rich array of mechanistic and kinetic puzzles. How strongly is a protein's fold imprinted on the ET kinetics, and might thermal fluctuations "wash out" signatures of structure? What is the influence of thermal fluctuations on ET kinetics beyond averaging of the tunneling barrier structure? Do electronic coupling mechanisms change as donor and acceptor reposition in a protein, and what are the consequences for the ET kinetics? Do fluctuations access minority species that dominate tunneling? Can energy exchanges between the electron and bridge vibrations generate vibronic signatures that label some of the D-to-A pathways traversed by the electron, thus eliminating unmarked pathways that would otherwise contribute to the DA coupling (as in other "which way" or double-slit experiments)? Might medium fluctuations drive tunneling-hopping mechanistic transitions? How does the donor-state preparation, in particular, its polarization toward the acceptor and its momentum characteristics (which may introduce complex rather than pure real relationships among donor orbital amplitudes), influence the electronic dynamics? In this Account, we describe our recent studies that address puzzling questions of how conformational distributions, excited-state polarization, and electronic and nuclear dynamical effects influence ET in macromolecules. Indeed, conformational and dynamical effects arise in all transport regimes, including the tunneling, resonant transport, and hopping regimes. Importantly, these effects can induce switching among ET mechanisms.

摘要

电子转移 (ET) 反应在化学、生物化学和物理学之间提供了一个联系。这些反应构成了生物能量学的“发电厂”和“电网”,它们挑战着我们理解进化如何操纵结构来控制 ET 动力学。然而,电子转移机械的球棍模型未能捕捉到 ET 分子丰富的电子和核动力学:这些静态表示掩盖了例如热可及的分子构象范围。结构波动对电子转移动力学的影响因电子隧穿概率随距离的指数衰减以及耦合途径之间的微妙干扰而放大。周围介质的波动也可以在相干和非相干 ET 机制之间切换传输 - 并且可能门控 ET,使得其动力学受到构象互变时间的限制,而不是固有 ET 时间尺度的限制。此外,制备带电荷的供体态或具有线性或角动量的供体态可能会产生深远的动力学和动力学后果。在本报告中,我们建立了一个词汇来描述构象集合和制备的供体态如何影响大分子中的 ET 动力学。该框架正在帮助解开在波动大分子结构内进化的功能生物 ET 途径的丰富性。描述非绝热 ET 的概念框架似乎令人惊讶地简单:计算系综平均(均方)的供体-受体(DA)隧穿相互作用,<H(DA)(2)>,和 Franck-Condon 加权态密度,rho(FC),以描述速率,(2pi/variant Planck's over 2pi)<H(DA)(2)>rho(FC)。现代对热平均电子耦合和 Franck-Condon 因子的描述在生物学、化学和纳米科学中建立了一个有用的预测框架。描述几何和能量波动对 ET 的影响使我们能够解决一系列丰富的机制和动力学难题。蛋白质的折叠对 ET 动力学的影响有多大,并且热波动是否会“消除”结构的特征?除了隧穿势垒结构的平均之外,热波动对 ET 动力学的影响如何?电子耦合机制是否随着供体和受体在蛋白质中的重新定位而改变,以及这对 ET 动力学有何影响?波动是否可以访问主导隧穿的少数物种?电子和桥振动之间的能量交换是否可以产生标记电子通过的一些 D-A 途径的振子特征,从而消除否则会对 DA 耦合做出贡献的无标记途径(如在其他“哪种方式”或双缝实验中)?介质波动是否会驱动隧穿跳跃机制转变?供体态制备,特别是其对受体的极化及其动量特性(其可能在供体轨道幅度之间引入复杂而不是纯实数关系)如何影响电子动力学?在本报告中,我们描述了我们最近的研究,这些研究解决了构象分布,激发态极化以及电子和核动力学效应如何影响大分子中 ET 的令人困惑的问题。实际上,构象和动力学效应出现在所有传输机制中,包括隧穿,共振传输和跳跃机制。重要的是,这些效应可以在 ET 机制之间诱导切换。

相似文献

1
Steering electrons on moving pathways.引导沿移动轨迹运动的电子。
Acc Chem Res. 2009 Oct 20;42(10):1669-78. doi: 10.1021/ar900123t.
6
Biological charge transfer via flickering resonance.生物电荷通过闪烁共振转移。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10049-54. doi: 10.1073/pnas.1316519111. Epub 2014 Jun 25.
10
Why Are DNA and Protein Electron Transfer So Different?为什么DNA和蛋白质的电子转移如此不同?
Annu Rev Phys Chem. 2019 Jun 14;70:71-97. doi: 10.1146/annurev-physchem-042018-052353. Epub 2019 Feb 6.

引用本文的文献

6
Temperature Dependence of Charge and Spin Transfer in Azurin.天青蛋白中电荷与自旋转移的温度依赖性
J Phys Chem C Nanomater Interfaces. 2021 May 13;125(18):9875-9883. doi: 10.1021/acs.jpcc.1c01218. Epub 2021 Apr 29.
10
Why Are DNA and Protein Electron Transfer So Different?为什么DNA和蛋白质的电子转移如此不同?
Annu Rev Phys Chem. 2019 Jun 14;70:71-97. doi: 10.1146/annurev-physchem-042018-052353. Epub 2019 Feb 6.

本文引用的文献

5
Chemistry. Inducing chirality with circularly polarized light.化学。用圆偏振光诱导手性。
Science. 2009 Mar 13;323(5920):1435-6. doi: 10.1126/science.1169338.
6
Single-molecule solvation-shell sensing.单分子溶剂化壳层传感
Phys Rev Lett. 2009 Feb 27;102(8):086801. doi: 10.1103/PhysRevLett.102.086801. Epub 2009 Feb 23.
9
Chiral control of electron transmission through molecules.通过分子的电子传输的手性控制。
Phys Rev Lett. 2008 Dec 5;101(23):238103. doi: 10.1103/PhysRevLett.101.238103.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验