Suppr超能文献

表达 TGF-β Ⅱ型受体的关节细胞:发生和作为关节祖细胞的特征。

Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors.

机构信息

Department of Pediatrics, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599-7039, USA.

出版信息

Stem Cells Dev. 2013 May 1;22(9):1342-59. doi: 10.1089/scd.2012.0207. Epub 2013 Feb 15.

Abstract

TGF-β type II receptor (Tgfbr2) signaling plays an essential role in joint-element development. The Tgfbr2(PRX-1KO) mouse, in which the Tgfbr2 is conditionally inactivated in developing limbs, lacks interphalangeal joints and tendons. In this study, we used the Tgfbr2-β-Gal-GFP-BAC mouse as a LacZ/green fluorescent protein (GFP)-based read-out to determine: the spatial and temporally regulated expression pattern of Tgfbr2-expressing cells within joint elements; their expression profile; and their slow-cycling labeling with bromodeoxyuridine (BrdU). Tgfbr2-β-Gal activity was first detected at embryonic day (E) 13.5 within the interphalangeal joint interzone. By E16.5, and throughout adulthood, Tgfbr2-expressing cells clustered in a contiguous niche that comprises the groove of Ranvier and the synovio-entheseal complex including part of the perichondrium, the synovium, the articular cartilage superficial layer, and the tendon's entheses. Tgfbr2-expressing cells were found in the synovio-entheseal complex niche with similar temporal pattern in the knee, where they were also detected in meniscal surface, ligaments, and the synovial lining of the infrapatellar fat pad. Tgfbr2-β-Gal-positive cells were positive for phospho-Smad2, signifying that the Tgfbr2 reporter was accurate. Developmental-stage studies showed that Tgfbr2 expression was in synchrony with expression of joint-morphogenic genes such as Noggin, GDF5, Notch1, and Jagged1. Prenatal and postnatal BrdU-incorporation studies showed that within this synovio-entheseal-articular-cartilage niche most of the Tgfbr2-expressing cells labeled as slow-proliferating cells, namely, stem/progenitor cells. Tgfbr2-positive cells, isolated from embryonic limb mesenchyme, expressed joint progenitor markers in a time- and TGF-β-dependent manner. Our studies provide evidence that joint Tgfbr2-expressing cells have anatomical, ontogenic, slow-cycling trait and in-vivo and ex-vivo expression profiles of progenitor joint cells.

摘要

TGF-β 型 II 受体(Tgfbr2)信号在关节元素发育中起着至关重要的作用。在发育中的四肢中条件性失活 Tgfbr2 的 Tgfbr2(PRX-1KO) 小鼠缺乏指间关节和肌腱。在这项研究中,我们使用 Tgfbr2-β-Gal-GFP-BAC 小鼠作为 LacZ/绿色荧光蛋白 (GFP) 读板来确定:关节元素内 Tgfbr2 表达细胞的空间和时间调节表达模式;它们的表达谱;及其用溴脱氧尿苷 (BrdU) 进行的慢循环标记。Tgfbr2-β-Gal 活性首先在胚胎日 (E) 13.5 在指间关节间隔内检测到。到 E16.5 及成年期,Tgfbr2 表达细胞聚集在一个连续的龛位中,包括Ranvier 沟和滑膜-腱结合复合体,包括部分软骨膜、滑膜、关节软骨浅层和肌腱的附着点。在膝关节中,Tgfbr2 表达细胞在滑膜-腱结合复合体龛位中具有相似的时间模式,也在半月板表面、韧带和髌下脂肪垫的滑膜衬里中检测到。Tgfbr2-β-Gal 阳性细胞对磷酸化 Smad2 呈阳性,表明 Tgfbr2 报告是准确的。发育阶段研究表明,Tgfbr2 表达与关节形态发生基因如 Noggin、GDF5、Notch1 和 Jagged1 的表达同步。产前和产后 BrdU 掺入研究表明,在这个滑膜-腱-软骨龛位中,大多数 Tgfbr2 表达细胞作为慢增殖细胞,即干细胞/祖细胞进行标记。从胚胎肢间充质中分离出的 Tgfbr2 阳性细胞以时间和 TGF-β 依赖的方式表达关节祖细胞标记物。我们的研究提供了证据表明关节 Tgfbr2 表达细胞具有解剖学、发生学、慢循环特征以及体内和体外祖关节细胞的表达谱。

相似文献

1
Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors.
Stem Cells Dev. 2013 May 1;22(9):1342-59. doi: 10.1089/scd.2012.0207. Epub 2013 Feb 15.
2
Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints.
Dev Biol. 2007 Oct 15;310(2):304-16. doi: 10.1016/j.ydbio.2007.07.040. Epub 2007 Aug 9.
3
TGF-beta signaling is essential for joint morphogenesis.
J Cell Biol. 2007 Jun 18;177(6):1105-17. doi: 10.1083/jcb.200611031.
5
TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development.
Dev Cell. 2012 Jul 17;23(1):71-81. doi: 10.1016/j.devcel.2012.05.004.
8
Expression of dominant negative TGF-β receptors inhibits cartilage formation in conditional transgenic mice.
J Bone Miner Metab. 2011 Jul;29(4):493-500. doi: 10.1007/s00774-010-0248-2. Epub 2011 Jan 7.
10
Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice.
Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1158-L1168. doi: 10.1152/ajplung.00299.2020. Epub 2021 Apr 21.

引用本文的文献

2
MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage.
Tissue Eng Part A. 2022 Mar;28(5-6):254-269. doi: 10.1089/ten.TEA.2021.0112. Epub 2021 Oct 25.
3
Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartilage regeneration.
Cell Mol Life Sci. 2020 Dec;77(23):4847-4859. doi: 10.1007/s00018-020-03567-y. Epub 2020 Jun 5.
6
Mechanisms of synovial joint and articular cartilage development.
Cell Mol Life Sci. 2019 Oct;76(20):3939-3952. doi: 10.1007/s00018-019-03191-5. Epub 2019 Jun 14.
7
Tissue engineering a tendon-bone junction with biodegradable braided scaffolds.
Biomater Res. 2019 May 16;23:11. doi: 10.1186/s40824-019-0160-3. eCollection 2019.
9
Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.
Stem Cells Int. 2017;2017:6843727. doi: 10.1155/2017/6843727. Epub 2017 Sep 6.

本文引用的文献

2
Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo.
Arthritis Rheum. 2011 May;63(5):1289-300. doi: 10.1002/art.30234.
3
Mesenchymal stem cells from development to postnatal joint homeostasis, aging, and disease.
Birth Defects Res C Embryo Today. 2010 Dec;90(4):257-71. doi: 10.1002/bdrc.20189.
6
The enthesis organ concept and its relevance to the spondyloarthropathies.
Adv Exp Med Biol. 2009;649:57-70. doi: 10.1007/978-1-4419-0298-6_4.
7
Basic concepts of enthesis biology and immunology.
J Rheumatol Suppl. 2009 Aug;83:12-3. doi: 10.3899/jrheum.090211.
8
Distinct mesenchymal progenitor cell subsets in the adult human synovium.
Rheumatology (Oxford). 2009 Sep;48(9):1057-64. doi: 10.1093/rheumatology/kep192. Epub 2009 Jul 14.
9
Identification of a stem cell niche in the zone of Ranvier within the knee joint.
J Anat. 2009 Sep;215(3):355-63. doi: 10.1111/j.1469-7580.2009.01115.x. Epub 2009 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验