Suppr超能文献

突触连接对液体状态机性能的影响。

Effects of synaptic connectivity on liquid state machine performance.

机构信息

Program for Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore.

出版信息

Neural Netw. 2013 Feb;38:39-51. doi: 10.1016/j.neunet.2012.11.003. Epub 2012 Nov 17.

Abstract

The Liquid State Machine (LSM) is a biologically plausible computational neural network model for real-time computing on time-varying inputs, whose structure and function were inspired by the properties of neocortical columns in the central nervous system of mammals. The LSM uses spiking neurons connected by dynamic synapses to project inputs into a high dimensional feature space, allowing classification of inputs by linear separation, similar to the approach used in support vector machines (SVMs). The performance of a LSM neural network model on pattern recognition tasks mainly depends on its parameter settings. Two parameters are of particular interest: the distribution of synaptic strengths and synaptic connectivity. To design an efficient liquid filter that performs desired kernel functions, these parameters need to be optimized. We have studied performance as a function of these parameters for several models of synaptic connectivity. The results show that in order to achieve good performance, large synaptic weights are required to compensate for a small number of synapses in the liquid filter, and vice versa. In addition, a larger variance of the synaptic weights results in better performance for LSM benchmark problems. We also propose a genetic algorithm-based approach to evolve the liquid filter from a minimum structure with no connections, to an optimized kernel with a minimal number of synapses and high classification accuracy. This approach facilitates the design of an optimal LSM with reduced computational complexity. Results obtained using this genetic programming approach show that the synaptic weight distribution after evolution is similar in shape to that found in cortical circuitry.

摘要

液体状态机(LSM)是一种基于生物合理性的计算神经网络模型,用于实时处理时变输入,其结构和功能受到哺乳动物中枢神经系统新皮层柱的特性启发。LSM 使用尖峰神经元通过动态突触连接,将输入投影到高维特征空间中,通过线性分离对输入进行分类,类似于支持向量机(SVM)中使用的方法。LSM 神经网络模型在模式识别任务中的性能主要取决于其参数设置。两个参数特别有趣:突触强度分布和突触连接。为了设计执行所需核函数的高效液体滤波器,需要对这些参数进行优化。我们已经研究了几种突触连接模型中这些参数的性能。结果表明,为了获得良好的性能,液体滤波器需要大的突触权重来补偿少量的突触,反之亦然。此外,较大的突触权重方差可提高 LSM 基准问题的性能。我们还提出了一种基于遗传算法的方法,从没有连接的最小结构进化液体滤波器,以得到具有最小突触数和高分类准确性的优化核。这种方法有助于设计具有降低计算复杂度的最优 LSM。使用这种遗传编程方法获得的结果表明,进化后的突触权重分布在形状上与皮质电路中的分布相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验