IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2635-49. doi: 10.1109/TNNLS.2015.2388544. Epub 2015 Jan 27.
This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.
本文提出了一种基于生物启发的数字液体状态机(LSM),用于低功耗大规模集成电路(VLSI)机器学习应用。据作者所知,这是首次采用生物启发的尖峰学习算法用于 LSM 的工作。通过所提出的在线学习,LSM 可以从输入模式中即时提取信息,而不需要像脊回归等离线学习方法那样需要中间数据存储。所提出的学习规则是局部的,因此每个突触权重更新仅基于相应的前突触和后突触神经元的发射活动,而不会在神经网络中产生全局通信。与基于反向传播的学习相比,所提出的方法的计算局部性使其适合于高效的并行 VLSI 实现。我们使用 TI46 语音语料库的子集来对生物启发的数字 LSM 进行基准测试。为了在不降低语音识别性能的情况下降低尖峰神经网络模型的复杂性,我们研究了突触模型对储层的遗忘记忆的影响,从而影响网络性能。此外,我们还研究了突触权重分辨率、储层大小和识别性能之间的权衡,并提出了进一步降低硬件实现开销的技术。我们的仿真结果表明,在使用 TI46 语音语料库评估的孤立单词识别方面,所提出的数字 LSM 可与最先进的基于隐马尔可夫模型的识别器 Sphinx-4 相媲美,并优于所有其他报告的识别器,包括基于 LSM 或神经网络的识别器。