Ju Han, Dranias Mark R, Banumurthy Gokulakrishna, VanDongen Antonius M J
Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
J Neurosci. 2015 Mar 4;35(9):4040-51. doi: 10.1523/JNEUROSCI.3793-14.2015.
The ability to process complex spatiotemporal information is a fundamental process underlying the behavior of all higher organisms. However, how the brain processes information in the temporal domain remains incompletely understood. We have explored the spatiotemporal information-processing capability of networks formed from dissociated rat E18 cortical neurons growing in culture. By combining optogenetics with microelectrode array recording, we show that these randomly organized cortical microcircuits are able to process complex spatiotemporal information, allowing the identification of a large number of temporal sequences and classification of musical styles. These experiments uncovered spatiotemporal memory processes lasting several seconds. Neural network simulations indicated that both short-term synaptic plasticity and recurrent connections are required for the emergence of this capability. Interestingly, NMDA receptor function is not a requisite for these short-term spatiotemporal memory processes. Indeed, blocking the NMDA receptor with the antagonist APV significantly improved the temporal processing ability of the networks, by reducing spontaneously occurring network bursts. These highly synchronized events have disastrous effects on spatiotemporal information processing, by transiently erasing short-term memory. These results show that the ability to process and integrate complex spatiotemporal information is an intrinsic property of generic cortical networks that does not require specifically designed circuits.
处理复杂时空信息的能力是所有高等生物行为背后的一个基本过程。然而,大脑如何在时间域中处理信息仍未完全被理解。我们探索了由培养的解离大鼠E18皮质神经元形成的网络的时空信息处理能力。通过将光遗传学与微电极阵列记录相结合,我们表明这些随机组织的皮质微电路能够处理复杂的时空信息,从而能够识别大量时间序列并对音乐风格进行分类。这些实验揭示了持续数秒的时空记忆过程。神经网络模拟表明,短期突触可塑性和循环连接都是这种能力出现所必需的。有趣的是,NMDA受体功能对于这些短期时空记忆过程并非必需。事实上,用拮抗剂APV阻断NMDA受体可通过减少自发发生的网络爆发而显著提高网络的时间处理能力。这些高度同步的事件通过短暂擦除短期记忆,对时空信息处理产生灾难性影响。这些结果表明,处理和整合复杂时空信息的能力是一般皮质网络的固有属性,不需要专门设计的电路。