Suppr超能文献

时空记忆是分离的皮层神经元网络的一种内在属性。

Spatiotemporal memory is an intrinsic property of networks of dissociated cortical neurons.

作者信息

Ju Han, Dranias Mark R, Banumurthy Gokulakrishna, VanDongen Antonius M J

机构信息

Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.

Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore

出版信息

J Neurosci. 2015 Mar 4;35(9):4040-51. doi: 10.1523/JNEUROSCI.3793-14.2015.

Abstract

The ability to process complex spatiotemporal information is a fundamental process underlying the behavior of all higher organisms. However, how the brain processes information in the temporal domain remains incompletely understood. We have explored the spatiotemporal information-processing capability of networks formed from dissociated rat E18 cortical neurons growing in culture. By combining optogenetics with microelectrode array recording, we show that these randomly organized cortical microcircuits are able to process complex spatiotemporal information, allowing the identification of a large number of temporal sequences and classification of musical styles. These experiments uncovered spatiotemporal memory processes lasting several seconds. Neural network simulations indicated that both short-term synaptic plasticity and recurrent connections are required for the emergence of this capability. Interestingly, NMDA receptor function is not a requisite for these short-term spatiotemporal memory processes. Indeed, blocking the NMDA receptor with the antagonist APV significantly improved the temporal processing ability of the networks, by reducing spontaneously occurring network bursts. These highly synchronized events have disastrous effects on spatiotemporal information processing, by transiently erasing short-term memory. These results show that the ability to process and integrate complex spatiotemporal information is an intrinsic property of generic cortical networks that does not require specifically designed circuits.

摘要

处理复杂时空信息的能力是所有高等生物行为背后的一个基本过程。然而,大脑如何在时间域中处理信息仍未完全被理解。我们探索了由培养的解离大鼠E18皮质神经元形成的网络的时空信息处理能力。通过将光遗传学与微电极阵列记录相结合,我们表明这些随机组织的皮质微电路能够处理复杂的时空信息,从而能够识别大量时间序列并对音乐风格进行分类。这些实验揭示了持续数秒的时空记忆过程。神经网络模拟表明,短期突触可塑性和循环连接都是这种能力出现所必需的。有趣的是,NMDA受体功能对于这些短期时空记忆过程并非必需。事实上,用拮抗剂APV阻断NMDA受体可通过减少自发发生的网络爆发而显著提高网络的时间处理能力。这些高度同步的事件通过短暂擦除短期记忆,对时空信息处理产生灾难性影响。这些结果表明,处理和整合复杂时空信息的能力是一般皮质网络的固有属性,不需要专门设计的电路。

相似文献

1
Spatiotemporal memory is an intrinsic property of networks of dissociated cortical neurons.
J Neurosci. 2015 Mar 4;35(9):4040-51. doi: 10.1523/JNEUROSCI.3793-14.2015.
2
Short-term memory in networks of dissociated cortical neurons.
J Neurosci. 2013 Jan 30;33(5):1940-53. doi: 10.1523/JNEUROSCI.2718-12.2013.
3
Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures.
Neuroscience. 2007 Aug 10;148(1):294-303. doi: 10.1016/j.neuroscience.2007.05.025. Epub 2007 Jul 5.
4
Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
IEEE Trans Biomed Eng. 2004 Nov;51(11):2051-62. doi: 10.1109/TBME.2004.827936.
5
The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
Eur J Neurosci. 2008 Nov;28(9):1825-35. doi: 10.1111/j.1460-9568.2008.06487.x.
7
Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.
eNeuro. 2017 May 22;4(3). doi: 10.1523/ENEURO.0361-16.2017. eCollection 2017 May-Jun.
9
Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.
J Neurosci. 2017 Jun 21;37(25):6098-6112. doi: 10.1523/JNEUROSCI.3903-16.2017. Epub 2017 May 24.
10
Plasticity of recurring spatiotemporal activity patterns in cortical networks.
Phys Biol. 2007 Oct 9;4(3):181-93. doi: 10.1088/1478-3975/4/3/005.

引用本文的文献

1
Deviance detection and regularity sensitivity in dissociated neuronal cultures.
Front Neural Circuits. 2025 Aug 25;19:1584322. doi: 10.3389/fncir.2025.1584322. eCollection 2025.
2
Dissociated neuronal cultures as model systems for self-organized prediction.
Front Neural Circuits. 2025 Jun 25;19:1568652. doi: 10.3389/fncir.2025.1568652. eCollection 2025.
3
Opportunities and Challenges of Brain-on-a-Chip Interfaces.
Cyborg Bionic Syst. 2025 Jun 17;6:0287. doi: 10.34133/cbsystems.0287. eCollection 2025.
5
Repetitive training enhances the pattern recognition capability of cultured neural networks.
PLoS Comput Biol. 2025 Apr 22;21(4):e1013043. doi: 10.1371/journal.pcbi.1013043. eCollection 2025 Apr.
6
Pathway-like Activation of 3D Neuronal Constructs with an Optical Interface.
Biosensors (Basel). 2025 Mar 12;15(3):179. doi: 10.3390/bios15030179.
7
Biological neurons act as generalization filters in reservoir computing.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2217008120. doi: 10.1073/pnas.2217008120. Epub 2023 Jun 12.
8
An Overview of In Vitro Biological Neural Networks for Robot Intelligence.
Cyborg Bionic Syst. 2023;4:0001. doi: 10.34133/cbsystems.0001. Epub 2023 Jan 10.
9
An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs.
Eur Biophys J. 2022 Sep;51(6):503-514. doi: 10.1007/s00249-022-01613-0. Epub 2022 Aug 5.
10
Leveraging plant physiological dynamics using physical reservoir computing.
Sci Rep. 2022 Jul 22;12(1):12594. doi: 10.1038/s41598-022-16874-0.

本文引用的文献

1
Stimulus information stored in lasting active and hidden network states is destroyed by network bursts.
Front Integr Neurosci. 2015 Feb 23;9:14. doi: 10.3389/fnint.2015.00014. eCollection 2015.
2
Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments.
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 20;369(1637):20120460. doi: 10.1098/rstb.2012.0460. Print 2014 Mar 5.
3
Emergence of dynamic memory traces in cortical microcircuit models through STDP.
J Neurosci. 2013 Jul 10;33(28):11515-29. doi: 10.1523/JNEUROSCI.5044-12.2013.
4
Short-term memory in networks of dissociated cortical neurons.
J Neurosci. 2013 Jan 30;33(5):1940-53. doi: 10.1523/JNEUROSCI.2718-12.2013.
5
Effects of synaptic connectivity on liquid state machine performance.
Neural Netw. 2013 Feb;38:39-51. doi: 10.1016/j.neunet.2012.11.003. Epub 2012 Nov 17.
6
Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.
Cereb Cortex. 2014 Mar;24(3):677-90. doi: 10.1093/cercor/bhs348. Epub 2012 Nov 11.
7
Distributed fading memory for stimulus properties in the primary visual cortex.
PLoS Biol. 2009 Dec;7(12):e1000260. doi: 10.1371/journal.pbio.1000260. Epub 2009 Dec 22.
8
Extracting information from neuronal populations: information theory and decoding approaches.
Nat Rev Neurosci. 2009 Mar;10(3):173-85. doi: 10.1038/nrn2578.
9
State-dependent computations: spatiotemporal processing in cortical networks.
Nat Rev Neurosci. 2009 Feb;10(2):113-25. doi: 10.1038/nrn2558. Epub 2009 Jan 15.
10
Liquid state machines and cultured cortical networks: the separation property.
Biosystems. 2009 Feb;95(2):90-7. doi: 10.1016/j.biosystems.2008.08.001. Epub 2008 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验