UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA.
Lab Chip. 2013 Feb 21;13(4):522-6. doi: 10.1039/c2lc40954b.
Electrical stimulation of nervous tissue is used clinically for the treatment of multiple neurological disorders and experimentally for basic research. With the increase of optical probes to record neuronal activity, simple and user-friendly methods are desired to stimulate neurons and their subcellular compartments for biological experimentation. Here we describe the novel integration of liquid metal electrodes with microfluidic culture platforms to accomplish this goal. We integrated electrode and cell channels into a single poly(dimethylsiloxane) (PDMS) chip, eliminating entirely the need to align electrodes with microchannels. We designed the electrode channels such that the metal can be injected by hand and when the device is non-covalently bound to glass. We demonstrated the biocompatibility of the electrodes for long-term cultures (12 days) using hippocampal neurons. We demonstrated the use of these electrodes to depolarize neurons and recorded neuronal activity using the calcium indicator dye, Fluo-4. We established optimal stimulation parameters that induce neuronal spiking without inducing damage. We showed that the liquid metal electrode evoked larger calcium responses in somata than bath electrodes using the same stimulus parameters. Lastly we demonstrated the use of these liquid metal electrodes to target and depolarize axons. In summary, the integration of liquid metal electrodes with neuronal culture platforms provides a user-friendly and targeted method to stimulate neurons and their subcellular compartments, thus providing a novel tool for future biological investigations.
电刺激神经组织在临床上被用于治疗多种神经疾病,并在基础研究中被用于实验。随着记录神经元活动的光学探针数量的增加,人们希望有简单易用的方法来刺激神经元及其亚细胞区室,以进行生物学实验。在这里,我们描述了将液态金属电极与微流控培养平台相结合的新方法来实现这一目标。我们将电极和细胞通道集成到单个聚二甲基硅氧烷(PDMS)芯片中,完全消除了将电极与微通道对齐的需要。我们设计了电极通道,使得金属可以通过手动注入,并且当器件通过非共价键与玻璃结合时也可以注入。我们使用海马神经元进行了长期培养(12 天),证明了电极的生物相容性。我们使用钙指示剂 Fluo-4 证明了这些电极可以使神经元去极化并记录神经元活动。我们确定了最优的刺激参数,这些参数可以在不引起损伤的情况下诱导神经元放电。我们表明,使用相同的刺激参数,液态金属电极在刺激神经元胞体时会引起更大的钙反应。最后,我们证明了这些液态金属电极可以靶向和去极化轴突。总之,将液态金属电极与神经元培养平台相结合,提供了一种简单易用且靶向的刺激神经元及其亚细胞区室的方法,为未来的生物学研究提供了一种新工具。