Suppr超能文献

在用户友好的微流控平台内集成预对准的液态金属电极以实现神经刺激。

Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform.

机构信息

UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA.

出版信息

Lab Chip. 2013 Feb 21;13(4):522-6. doi: 10.1039/c2lc40954b.

Abstract

Electrical stimulation of nervous tissue is used clinically for the treatment of multiple neurological disorders and experimentally for basic research. With the increase of optical probes to record neuronal activity, simple and user-friendly methods are desired to stimulate neurons and their subcellular compartments for biological experimentation. Here we describe the novel integration of liquid metal electrodes with microfluidic culture platforms to accomplish this goal. We integrated electrode and cell channels into a single poly(dimethylsiloxane) (PDMS) chip, eliminating entirely the need to align electrodes with microchannels. We designed the electrode channels such that the metal can be injected by hand and when the device is non-covalently bound to glass. We demonstrated the biocompatibility of the electrodes for long-term cultures (12 days) using hippocampal neurons. We demonstrated the use of these electrodes to depolarize neurons and recorded neuronal activity using the calcium indicator dye, Fluo-4. We established optimal stimulation parameters that induce neuronal spiking without inducing damage. We showed that the liquid metal electrode evoked larger calcium responses in somata than bath electrodes using the same stimulus parameters. Lastly we demonstrated the use of these liquid metal electrodes to target and depolarize axons. In summary, the integration of liquid metal electrodes with neuronal culture platforms provides a user-friendly and targeted method to stimulate neurons and their subcellular compartments, thus providing a novel tool for future biological investigations.

摘要

电刺激神经组织在临床上被用于治疗多种神经疾病,并在基础研究中被用于实验。随着记录神经元活动的光学探针数量的增加,人们希望有简单易用的方法来刺激神经元及其亚细胞区室,以进行生物学实验。在这里,我们描述了将液态金属电极与微流控培养平台相结合的新方法来实现这一目标。我们将电极和细胞通道集成到单个聚二甲基硅氧烷(PDMS)芯片中,完全消除了将电极与微通道对齐的需要。我们设计了电极通道,使得金属可以通过手动注入,并且当器件通过非共价键与玻璃结合时也可以注入。我们使用海马神经元进行了长期培养(12 天),证明了电极的生物相容性。我们使用钙指示剂 Fluo-4 证明了这些电极可以使神经元去极化并记录神经元活动。我们确定了最优的刺激参数,这些参数可以在不引起损伤的情况下诱导神经元放电。我们表明,使用相同的刺激参数,液态金属电极在刺激神经元胞体时会引起更大的钙反应。最后,我们证明了这些液态金属电极可以靶向和去极化轴突。总之,将液态金属电极与神经元培养平台相结合,提供了一种简单易用且靶向的刺激神经元及其亚细胞区室的方法,为未来的生物学研究提供了一种新工具。

相似文献

2
Liquid metal electrode-enabled flexible microdroplet sensor.
Lab Chip. 2020 Feb 7;20(3):496-504. doi: 10.1039/c9lc00995g. Epub 2019 Dec 16.
4
Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode.
J Neurosci Methods. 2015 Sep 30;253:272-8. doi: 10.1016/j.jneumeth.2015.07.002. Epub 2015 Jul 13.
5
A multi-compartment CNS neuron-glia Co-culture microfluidic platform.
J Vis Exp. 2009 Sep 10(31):1399. doi: 10.3791/1399.
6
Recording large extracellular spikes in microchannels along many axonal sites from individual neurons.
PLoS One. 2015 Mar 3;10(3):e0118514. doi: 10.1371/journal.pone.0118514. eCollection 2015.
7
Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
J Neurosci Methods. 2019 Oct 1;326:108369. doi: 10.1016/j.jneumeth.2019.108369. Epub 2019 Jul 18.
8
Picoinjection of microfluidic drops without metal electrodes.
J Vis Exp. 2014 Apr 18(86):50913. doi: 10.3791/50913.
9
A handy liquid metal based electroosmotic flow pump.
Lab Chip. 2014 Jun 7;14(11):1866-72. doi: 10.1039/c4lc00111g. Epub 2014 Apr 4.
10
A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation.
Sovrem Tekhnologii Med. 2021;12(6):21-27. doi: 10.17691/stm2020.12.6.03. Epub 2020 Dec 28.

引用本文的文献

1
Integrating conductive electrodes into hydrogel-based microfluidic chips for real-time monitoring of cell response.
Front Bioeng Biotechnol. 2024 Aug 27;12:1421592. doi: 10.3389/fbioe.2024.1421592. eCollection 2024.
2
Design and Dynamic In Vivo Validation of a Multi-Channel Stretchable Liquid Metal Coil Array.
Materials (Basel). 2024 Jul 5;17(13):3325. doi: 10.3390/ma17133325.
3
Liquid metal biomaterials: translational medicines, challenges and perspectives.
Natl Sci Rev. 2023 Nov 29;11(2):nwad302. doi: 10.1093/nsr/nwad302. eCollection 2024 Feb.
4
Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
Lab Chip. 2023 Aug 8;23(16):3537-3560. doi: 10.1039/d3lc00094j.
5
Modelling skeletal pain harnessing tissue engineering.
In Vitro Model. 2022;1(4-5):289-307. doi: 10.1007/s44164-022-00028-7. Epub 2022 Aug 4.
6
Wearable Intracranial Pressure Monitoring Sensor for Infants.
Biosensors (Basel). 2021 Jun 29;11(7):213. doi: 10.3390/bios11070213.
7
Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research.
Adv Healthc Mater. 2021 Jul;10(14):e2100371. doi: 10.1002/adhm.202100371. Epub 2021 May 25.
8
Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles.
Adv Sci (Weinh). 2020 Apr 22;7(12):2000192. doi: 10.1002/advs.202000192. eCollection 2020 Jun.
10
Challenges and Future Prospects on 3D Modeling of the Neuromuscular Circuit.
Front Bioeng Biotechnol. 2018 Dec 11;6:194. doi: 10.3389/fbioe.2018.00194. eCollection 2018.

本文引用的文献

2
Shaping brain connections through spontaneous neural activity.
Eur J Neurosci. 2012 May;35(10):1595-604. doi: 10.1111/j.1460-9568.2012.08101.x.
3
Advances in auditory prostheses.
Curr Opin Neurol. 2012 Feb;25(1):61-6. doi: 10.1097/WCO.0b013e32834ef878.
4
Propagation of action potential activity in a predefined microtunnel neural network.
J Neural Eng. 2011 Aug;8(4):046031. doi: 10.1088/1741-2560/8/4/046031. Epub 2011 Jul 13.
5
Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics.
Adv Mater. 2011 Aug 16;23(31):3559-64. doi: 10.1002/adma.201101257. Epub 2011 Jul 4.
6
Glutamate induces de novo growth of functional spines in developing cortex.
Nature. 2011 Jun 2;474(7349):100-4. doi: 10.1038/nature09986. Epub 2011 May 8.
7
Inherently aligned microfluidic electrodes composed of liquid metal.
Lab Chip. 2011 Mar 7;11(5):905-11. doi: 10.1039/c0lc00501k. Epub 2011 Jan 24.
8
Optical reporters of synaptic activity in neural circuits.
Exp Physiol. 2011 Jan;96(1):4-12. doi: 10.1113/expphysiol.2009.051953. Epub 2010 Sep 24.
9
Microfluidic Multicompartment Device for Neuroscience Research.
Langmuir. 2003 Mar 4;19(5):1551-1556. doi: 10.1021/la026417v.
10
Microfluidic local perfusion chambers for the visualization and manipulation of synapses.
Neuron. 2010 Apr 15;66(1):57-68. doi: 10.1016/j.neuron.2010.03.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验