Pourmostafa Ayda, Bhusal Anant, Haridas Menon Niranjan, Li Zhenglong, Basuray Sagnik, Miri Amir K
Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
Department of Mechanical Engineering, Rowan University, Glassboro, NJ, United States.
Front Bioeng Biotechnol. 2024 Aug 27;12:1421592. doi: 10.3389/fbioe.2024.1421592. eCollection 2024.
The conventional real-time screening in organs-on-chips is limited to optical tracking of pre-tagged cells and biological agents. This work introduces an efficient biofabrication protocol to integrate tunable hydrogel electrodes into 3D bioprinted-on-chips. We established our method of fabricating cell-laden hydrogel-based microfluidic chips through digital light processing-based 3D bioprinting. Our conductive ink includes poly-(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT: PSS) microparticles doped in polyethylene glycol diacrylate (PEGDA). We optimized the manufacturing process of PEDOT: PSS microparticles characterized our conductive ink for different 3D bioprinting parameters, geometries, and materials conditions. While the literature is limited to 0.5% w/v for PEDOT: PSS microparticle concentration, we increased their concentration to 5% w/v with superior biological responses. We measured the conductivity in the 3-15 m/m for a range of 0.5%-5% w/v microparticles, and we showed the effectiveness of 3D-printed electrodes for predicting cell responses when encapsulated in gelatin-methacryloyl (GelMA). Interestingly, a higher cellular activity was observed in the case of 5% w/v microparticles compared to 0.5% w/v microparticles. Electrochemical impedance spectroscopy measurements indicated significant differences in cell densities and spheroid sizes embedded in GelMA microtissues.
器官芯片中的传统实时筛选仅限于对预先标记的细胞和生物制剂进行光学跟踪。这项工作引入了一种高效的生物制造方案,将可调谐水凝胶电极集成到三维生物打印芯片中。我们通过基于数字光处理的三维生物打印建立了制造载细胞水凝胶基微流控芯片的方法。我们的导电墨水包括掺杂在聚乙二醇二丙烯酸酯(PEGDA)中的聚(3,4-乙撑二氧噻吩)-聚苯乙烯磺酸盐(PEDOT:PSS)微粒。我们优化了PEDOT:PSS微粒的制造工艺,表征了我们的导电墨水在不同三维生物打印参数、几何形状和材料条件下的性能。虽然文献中PEDOT:PSS微粒浓度限制在0.5% w/v,但我们将其浓度提高到5% w/v,并获得了更好的生物学响应。我们测量了0.5%-5% w/v微粒范围内的电导率为3-15 m/m,并且展示了三维打印电极在封装于甲基丙烯酰化明胶(GelMA)中时预测细胞反应的有效性。有趣的是,与0.5% w/v微粒相比,5% w/v微粒的情况下观察到更高的细胞活性。电化学阻抗谱测量表明,嵌入GelMA微组织中的细胞密度和球体大小存在显著差异。