Suppr超能文献

一种针对人多聚(A)特异性核糖核酸酶的特异性抑制剂的综合计算机辅助设计方法。

An integrated in silico approach to design specific inhibitors targeting human poly(a)-specific ribonuclease.

机构信息

Bioinformatics and Medical Informatics Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.

出版信息

PLoS One. 2012;7(12):e51113. doi: 10.1371/journal.pone.0051113. Epub 2012 Dec 6.

Abstract

Poly(A)-specific ribonuclease (PARN) is an exoribonuclease/deadenylase that degrades 3'-end poly(A) tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN's catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A) amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A) inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.

摘要

聚腺苷酸特异性核糖核酸酶 (PARN) 是一种外切核糖核酸酶/脱腺苷酶,可降解几乎所有真核生物的 3'-端聚腺苷酸尾巴。PARN 的大部分生化和结构信息来自人类酶。然而,PARN 沿着真核生物进化阶梯的存在需要进一步和彻底的调查。尽管全长人 PARN 的完整结构以及催化机制的几个方面仍然难以捉摸,但许多先前的研究表明 PARN 可用作强大且有前途的抗癌靶标。在本研究中,我们试图通过深入的生物信息学分析来补充 PARN 现有的结构信息,以获得 PARN 活性位点分子进化的全息图。为了绘制允许针对 PARN 进行特定药物设计的轮廓,设计了一个明确的特定平台,用于开发针对该酶独特结构和催化特征的选择性调节剂。基于所有公开可用基因组的广泛系统发育分析表明,PARN 在真核生物物种中广泛分布,并揭示了结构上重要的氨基酸,这些氨基酸可能被认为是调节 PARN 催化机制的潜在强贡献者。基于上述内容,我们提出了 PARN 催化机制的综合计算模型,并且还开发了 3D 药效团模型,随后将其用于引入 DNP-聚 A 两亲性底物类似物作为 PARN 的潜在抑制剂。实际上,生化分析表明 DNP-聚 A 竞争性抑制 PARN。我们的方法为药效团模型的合理设计以及具有治疗潜力的 PARN 新型调节剂提供了高效的集成平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/015c/3516499/03b7c08ccad4/pone.0051113.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验