Suppr超能文献

基于全细胞的 CYP153A6 催化的(S)-柠檬烯羟化效率取决于宿主背景,并通过 AlkL 摄取单萜类物质而获益。

Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL.

机构信息

Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany.

出版信息

Biotechnol Bioeng. 2013 May;110(5):1282-92. doi: 10.1002/bit.24801. Epub 2013 Feb 9.

Abstract

Living microbial cells are considered to be the catalyst of choice for selective terpene functionalization. However, such processes often suffer from side product formation and poor substrate mass transfer into cells. For the hydroxylation of (S)-limonene to (S)-perillyl alcohol by Pseudomonas putida KT2440 (pGEc47ΔB)(pCom8-PFR1500), containing the cytochrome P450 monooxygenase CYP153A6, the side products perillyl aldehyde and perillic acid constituted up to 26% of the total amount of oxidized terpenes. In this study, it is shown that the reaction rate is substrate-limited in the two-liquid phase system used and that host intrinsic dehydrogenases and not CYP153A6 are responsible for the formation of the undesired side products. In contrast to P. putida KT2440, E. coli W3110 was found to catalyze perillyl aldehyde reduction to the alcohol and no oxidation to the acid. Furthermore, E. coli W3110 harboring CYP153A6 showed high limonene hydroxylation activities (7.1 U g CDW-1). The outer membrane protein AlkL was found to enhance hydroxylation activities of E. coli twofold in aqueous single-phase and fivefold in two-liquid phase biotransformations. In the latter system, E. coli harboring CYP153A6 and AlkL produced up to 39.2 mmol (S)-perillyl alcohol L tot-1 within 26 h, whereas no perillic acid and minor amounts of perillyl aldehyde (8% of the total products) were formed. In conclusion, undesired perillyl alcohol oxidation was reduced by choosing E. coli's enzymatic background as a reaction environment and co-expression of the alkL gene in E. coli represents a promising strategy to enhance terpene bioconversion rates.

摘要

活微生物细胞被认为是选择萜类化合物功能化的首选催化剂。然而,此类过程通常会产生副产物,并且底物向细胞内的质量转移较差。对于恶臭假单胞菌 KT2440(pGEc47ΔB)(pCom8-PFR1500)中细胞色素 P450 单加氧酶 CYP153A6 对(S)-柠檬烯进行(S)-紫苏醇羟基化,副产物紫苏醛和紫苏酸构成了氧化萜类化合物总量的 26%。在这项研究中,表明在使用的两相体系中,反应速率受到底物限制,并且不是 CYP153A6 而是宿主内在的脱氢酶负责形成不需要的副产物。与恶臭假单胞菌 KT2440 相比,发现大肠杆菌 W3110 能够催化紫苏醛还原为醇,而不会氧化为酸。此外,发现大肠杆菌 W3110 中含有 CYP153A6 时具有很高的柠檬烯羟化活性(7.1 U g CDW-1)。发现外膜蛋白 AlkL 在单相水和两相生物转化中分别将大肠杆菌的羟化活性提高了两倍和五倍。在后一种体系中,大肠杆菌中含有 CYP153A6 和 AlkL,在 26 小时内产生了高达 39.2 mmol(S)-紫苏醇 L tot-1,而没有形成紫苏酸和少量紫苏醛(总产物的 8%)。总之,通过选择大肠杆菌的酶学背景作为反应环境并在大肠杆菌中共同表达 alkL 基因,减少了不需要的紫苏醇氧化,这代表了提高萜类化合物生物转化速率的有前途的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验