Suppr超能文献

利用动力学控制的全细胞多步生物催化进行末端脂肪酸甲酯氧官能化的反应与催化剂工程。

Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.

作者信息

Schrewe Manfred, Julsing Mattijs K, Lange Kerstin, Czarnotta Eik, Schmid Andreas, Bühler Bruno

机构信息

Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany.

出版信息

Biotechnol Bioeng. 2014 Sep;111(9):1820-30. doi: 10.1002/bit.25248. Epub 2014 May 22.

Abstract

The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions.

摘要

含加氧酶的全细胞生物催化剂能够选择性且高效地催化未活化C−H键的氧官能化反应。含有来自恶臭假单胞菌GPo1的烷烃单加氧酶AlkBGT和外膜蛋白AlkL的重组大肠杆菌W3110已被证明能有效催化可再生脂肪酸甲酯的末端氧官能化反应,生成对聚合物合成有意义的双功能产物。在本研究中,含AlkBGTL的大肠杆菌W3110被证明能催化十二烷酸甲酯(DAME)通过末端醇和醛多步转化为酸,每个反应步骤均呈现米氏动力学。在双液相生物转化中,发现产物形成模式受DAME可用性控制。将DAME作为本体有机相供应导致末端醇作为主要产物积累。通过使用邻苯二甲酸二(2-乙基己基)酯(BEHP)作为有机载体溶剂来限制DAME的可用性,几乎能专一性地积累酸。此外,BEHP的使用通过降低底物和产物的毒性作用提高了催化剂稳定性。通过共表达编码醇脱氢酶AlkJ的基因,实现了向过度氧化产物的进一步转变,该酶在体内能催化醇高效且不可逆地氧化为醛。以DAME作为有机相,使用含有AlkBGT、AlkL以及AlkJ的静息细胞时,醛作为主要产物积累。本研究突出了全细胞生物催化在合成工业相关双功能结构单元方面的多功能性,并展示了如何实施集成反应和催化剂工程来控制生物催化多步反应中的产物形成模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验