Suppr超能文献

黄蜂(Polistes humilis,Vespidae,膜翅目)头滚方向的前馈和视觉反馈控制。

Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera).

机构信息

Aix-Marseille Université, CNRS, ISM UMR 7287, CP 910, 13288, Marseille Cedex 09, France.

出版信息

J Exp Biol. 2013 Apr 1;216(Pt 7):1280-91. doi: 10.1242/jeb.074773. Epub 2012 Dec 13.

Abstract

Flying insects keep their visual system horizontally aligned, suggesting that gaze stabilization is a crucial first step in flight control. Unlike flies, hymenopteran insects such as bees and wasps do not have halteres that provide fast, feed-forward angular rate information to stabilize head orientation in the presence of body rotations. We tested whether hymenopteran insects use inertial (mechanosensory) information to control head orientation from other sources, such as the wings, by applying periodic roll perturbations to male Polistes humilis wasps flying in tether under different visual conditions indoors and in natural outdoor conditions. We oscillated the thorax of the insects with frequency-modulated sinusoids (chirps) with frequencies increasing from 0.2 to 2 Hz at a maximal amplitude of 50 deg peak-to-peak and maximal angular velocity of ±245 deg s(-1). We found that head roll stabilization is best outdoors, but completely absent in uniform visual conditions and in darkness. Step responses confirm that compensatory head roll movements are purely visually driven. Modelling step responses indicates that head roll stabilization is achieved by merging information on head angular velocity, presumably provided by motion-sensitive neurons and information on head orientation, presumably provided by light level integration across the compound eyes and/or ocelli (dorsal light response). Body roll in free flight reaches amplitudes of ±40 deg and angular velocities greater than 1000 deg s(-1), while head orientation remains horizontal for most of the time to within ±10 deg. In free flight, we did not find a delay between spontaneous body roll and compensatory head movements, and suggest that this is evidence for the contribution of a feed-forward control to head stabilization.

摘要

飞行昆虫保持其视觉系统水平对齐,表明凝视稳定是飞行控制的关键第一步。与苍蝇不同,膜翅目昆虫(如蜜蜂和黄蜂)没有平衡棒,无法在身体旋转时提供快速的前馈角速度信息来稳定头部方向。我们通过向在室内不同视觉条件和自然户外条件下飞行的雄性 Polistes humilis 黄蜂施加周期性滚动扰动,测试了膜翅目昆虫是否会利用来自翅膀等其他来源的惯性(机械感觉)信息来控制头部方向。我们用频率调制正弦波(啁啾声)来使昆虫的胸部振动,频率从 0.2 赫兹增加到 2 赫兹,最大幅度为 50 度峰峰值和最大角速度为 ±245 度每秒。我们发现头部滚动稳定在户外最佳,但在均匀视觉条件和黑暗中完全不存在。阶跃响应证实了补偿性头部滚动运动完全是由视觉驱动的。模型阶跃响应表明,头部滚动稳定是通过合并头部角速度信息(推测由运动敏感神经元提供)和头部方向信息(推测由复眼和/或小眼的光水平整合提供)来实现的。自由飞行中的身体滚动达到±40 度的幅度和大于 1000 度每秒的角速度,而头部方向在大部分时间内保持水平,偏差在±10 度以内。在自由飞行中,我们没有发现自发的身体滚动和补偿性头部运动之间的延迟,这表明这是前馈控制对头部稳定的贡献的证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验