Goulard Roman, Julien-Laferriere Alice, Fleuriet Jérome, Vercher Jean-Louis, Viollet Stéphane
Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France.
INRIA and Université de Lyon, Lyon 69000, France CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne 69622, France.
J Exp Biol. 2015 Dec;218(Pt 23):3777-87. doi: 10.1242/jeb.127043. Epub 2015 Oct 20.
The ability of hoverflies to control their head orientation with respect to their body contributes importantly to their agility and their autonomous navigation abilities. Many tasks performed by this insect during flight, especially while hovering, involve a head stabilization reflex. This reflex, which is mediated by multisensory channels, prevents the visual processing from being disturbed by motion blur and maintains a consistent perception of the visual environment. The so-called dorsal light response (DLR) is another head control reflex, which makes insects sensitive to the brightest part of the visual field. In this study, we experimentally validate and quantify the control loop driving the head roll with respect to the horizon in hoverflies. The new approach developed here consisted of using an upside-down horizon in a body roll paradigm. In this unusual configuration, tethered flying hoverflies surprisingly no longer use purely vision-based control for head stabilization. These results shed new light on the role of neck proprioceptor organs in head and body stabilization with respect to the horizon. Based on the responses obtained with male and female hoverflies, an improved model was then developed in which the output signals delivered by the neck proprioceptor organs are combined with the visual error in the estimated position of the body roll. An internal estimation of the body roll angle with respect to the horizon might explain the extremely accurate flight performances achieved by some hovering insects.
食蚜蝇控制头部相对于身体方向的能力对其敏捷性和自主导航能力起着重要作用。这种昆虫在飞行过程中执行的许多任务,尤其是悬停时,都涉及头部稳定反射。这种由多感官通道介导的反射可防止视觉处理因运动模糊而受到干扰,并保持对视觉环境的一致感知。所谓的背侧光反应(DLR)是另一种头部控制反射,它使昆虫对视野中最亮的部分敏感。在本研究中,我们通过实验验证并量化了食蚜蝇头部相对于地平线的滚动控制回路。这里开发的新方法包括在身体滚动范式中使用倒置的地平线。在这种不寻常的配置中,系留飞行的食蚜蝇出人意料地不再使用基于视觉的控制来稳定头部。这些结果为颈部本体感受器器官在头部和身体相对于地平线的稳定中的作用提供了新的线索。基于对雄性和雌性食蚜蝇获得的反应,随后开发了一个改进模型,其中颈部本体感受器器官传递的输出信号与身体滚动估计位置中的视觉误差相结合。相对于地平线的身体滚动角度的内部估计可能解释了一些悬停昆虫所实现的极其精确的飞行性能。