Suppr超能文献

Stress enhancement and fatigue susceptibility of porous coated Ti-6Al-4V implants: an elastic analysis.

作者信息

Messersmith P B, Cooke F W

机构信息

Department of Materials Science and Engineering, University of Illinois, Urbana 61801.

出版信息

J Biomed Mater Res. 1990 May;24(5):591-604. doi: 10.1002/jbm.820240506.

Abstract

An elastic stress analysis of porous-coated implant surfaces was performed using the finite element method. Three-hundred-microns-diameter metal beads sinter bonded onto an implant surface were modeled with sinter neck radii of 5, 10, 20, and 50 microns. Smooth-surface, single-bead, single-layer, and double-layer systems were analyzed. The finite element models were loaded to simulate bone-bead contact forces and lateral hip implant tensile forces. Results showed that, for a single bead sinter-bonded onto an implant surface, concentration of stress occurs either at the base of the sinter neck or within the neck itself, depending on the type of load applied. Under lateral hip implant tensile loads, a maximum stress concentration factor of 1.97 was obtained for a single bead sinter-bonded onto a implant surface. Addition of a single layer of beads onto the implant surface resulted in a significant increase in stress at the most proximal and distal ends of the porous layer, with a maximum stress concentration factor of 4.3. Addition of a second layer of beads did not significantly increase the magnitude of the stress concentration occurring at the ends of the porous layer. The results of this study provide stress concentration factors for porous coatings with sinter necks of known dimensions under loading conditions similar to those present along the lateral surface of a hip prosthesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验