Suppr超能文献

癌症纳米颗粒的历程:从注射部位到作用部位

Odyssey of a cancer nanoparticle: from injection site to site of action.

作者信息

Nichols Joseph W, Bae You Han

机构信息

Department of Bioengineering, University of Utah, Salt Lake City, UT 84108.

出版信息

Nano Today. 2012 Dec 1;7(6):606-618. doi: 10.1016/j.nantod.2012.10.010.

Abstract

No chemotherapeutic drug can be effective until it is delivered to its target site. Nano-sized drug carriers are designed to transport therapeutic or diagnostic materials from the point of administration to the drug's site of action. This task requires the nanoparticle carrying the drug to complete a journey from the injection site to the site of action. The journey begins with the injection of the drug carrier into the bloodstream and continues through stages of circulation, extravasation, accumulation, distribution, endocytosis, endosomal escape, intracellular localization and-finally-action. Effective nanoparticle design should consider all of these stages to maximize drug delivery to the entire tumor and effectiveness of the treatment.

摘要

任何化疗药物在送达靶点之前都不会有效。纳米级药物载体旨在将治疗或诊断物质从给药点运输到药物作用部位。这项任务要求携带药物的纳米颗粒完成从注射部位到作用部位的旅程。旅程始于将药物载体注入血液,并持续经历循环、渗出、积累、分布、内吞、内体逃逸、细胞内定位,最终发挥作用等阶段。有效的纳米颗粒设计应考虑所有这些阶段,以最大限度地将药物递送至整个肿瘤并提高治疗效果。

相似文献

1
Odyssey of a cancer nanoparticle: from injection site to site of action.
Nano Today. 2012 Dec 1;7(6):606-618. doi: 10.1016/j.nantod.2012.10.010.
2
pH-responsive cationic liposome for endosomal escape mediated drug delivery.
Colloids Surf B Biointerfaces. 2020 Apr;188:110804. doi: 10.1016/j.colsurfb.2020.110804. Epub 2020 Jan 16.
3
Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery.
J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):2651-63. doi: 10.1166/jnn.2006.443.
4
Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
Nanomedicine (Lond). 2019 Jan;14(2):215-223. doi: 10.2217/nnm-2018-0326. Epub 2018 Dec 4.
5
Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
Acc Chem Res. 2021 Jul 20;54(14):2916-2927. doi: 10.1021/acs.accounts.1c00215. Epub 2021 Jul 7.
7
Targeted cellular delivery of robust enzyme nanoparticles for the treatment of drug-induced hepatotoxicity and liver injury.
Acta Biomater. 2018 Nov;81:231-241. doi: 10.1016/j.actbio.2018.09.023. Epub 2018 Sep 19.
8
Nano-sized drug carriers: Extravasation, intratumoral distribution, and their modeling.
J Control Release. 2017 Dec 10;267:31-46. doi: 10.1016/j.jconrel.2017.08.003. Epub 2017 Aug 12.
10
An efficient targeted drug delivery through apotransferrin loaded nanoparticles.
PLoS One. 2009 Oct 2;4(10):e7240. doi: 10.1371/journal.pone.0007240.

引用本文的文献

1
Size-transformable nanotherapeutics for cancer therapy.
Acta Pharm Sin B. 2025 Feb;15(2):834-851. doi: 10.1016/j.apsb.2024.11.012. Epub 2024 Nov 25.
2
Advanced bioanalytical techniques for pharmacokinetic studies of nanocarrier drug delivery systems.
J Pharm Anal. 2025 Jan;15(1):101070. doi: 10.1016/j.jpha.2024.101070. Epub 2024 Aug 14.
3
A Review on Medicinal Approaches of Novel Imatinib Derivatives.
Curr Top Med Chem. 2025;25(12):1492-1516. doi: 10.2174/0115680266332163241127114029.
4
From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy.
AAPS PharmSciTech. 2024 Dec 13;26(1):10. doi: 10.1208/s12249-024-03011-5.
5
Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles.
Beilstein J Nanotechnol. 2024 Sep 30;15:1208-1226. doi: 10.3762/bjnano.15.98. eCollection 2024.
6
Understanding the role of biomolecular coronas in human exposure to nanomaterials.
Environ Sci Nano. 2024 Sep 9;11(11):4421-4448. doi: 10.1039/d4en00488d. eCollection 2024 Nov 7.
8
Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance.
RSC Adv. 2024 May 1;14(20):13862-13899. doi: 10.1039/d3ra05816f. eCollection 2024 Apr 25.
10
Reaching the Tumor: Mobility of Polymeric Micelles Inside an Tumor-on-a-Chip Model with Dual ECM.
ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59134-59144. doi: 10.1021/acsami.3c12798. Epub 2023 Dec 15.

本文引用的文献

2
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.
N Engl J Med. 2012 Mar 8;366(10):883-892. doi: 10.1056/NEJMoa1113205.
4
Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis.
Adv Drug Deliv Rev. 2012 Jan;64(1):78-94. doi: 10.1016/j.addr.2011.11.012. Epub 2011 Dec 2.
5
Collagenase-1 injection improved tumor distribution and gene expression of cationic lipoplex.
Int J Pharm. 2012 Feb 28;423(2):428-34. doi: 10.1016/j.ijpharm.2011.12.015. Epub 2011 Dec 17.
6
7
Nanoparticle delivery of cancer drugs.
Annu Rev Med. 2012;63:185-98. doi: 10.1146/annurev-med-040210-162544. Epub 2011 Sep 1.
9
Evaluation of iron oxide nanoparticle biocompatibility.
Int J Nanomedicine. 2011;6:787-94. doi: 10.2147/IJN.S17574. Epub 2011 Apr 14.
10
Characterization of the mononuclear phagocyte system in zebrafish.
Blood. 2011 Jun 30;117(26):7126-35. doi: 10.1182/blood-2010-11-321448. Epub 2011 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验