Suppr超能文献

峰值壁应力可预测降主动脉夹层动脉瘤的扩张率。

Peak wall stress predicts expansion rate in descending thoracic aortic aneurysms.

机构信息

Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Ann Thorac Surg. 2013 Feb;95(2):593-8. doi: 10.1016/j.athoracsur.2012.10.025. Epub 2012 Dec 13.

Abstract

BACKGROUND

Aortic diseases, including aortic aneurysms, are the 12th leading cause of death in the United States. The incidence of descending thoracic aortic aneurysms is estimated at 10.4 per 100,000 patient-years. Growing evidence suggests that stress measurements derived from structural analysis of aortic geometries predict clinical outcomes better than diameter alone.

METHODS

Twenty-five patients undergoing clinical and radiologic surveillance for thoracic aortic aneurysms were retrospectively identified. Custom MATLAB algorithms were employed to extract aortic wall and intraluminal thrombus geometry from computed tomography angiography scans. The resulting reconstructions were loaded with 120 mm Hg of pressure using finite element analysis. Relationships among peak wall stress, aneurysm growth, and clinical outcome were examined.

RESULTS

The average patient age was 71.6 ± 10.0 years, and average follow-up time was 17.5 ± 9 months (range, 6 to 43). The mean initial aneurysm diameter was 47.8 ± 8.0 mm, and the final diameter was 52.1 ± 10.0 mm. Mean aneurysm growth rate was 2.9 ± 2.4 mm per year. A stronger correlation (r = 0.894) was found between peak wall stress and aneurysm growth rate than between maximal aortic diameter and growth rate (r = 0.531). Aneurysms undergoing surgical intervention had higher peak wall stresses than aneurysms undergoing continued surveillance (300 ± 75 kPa versus 229 ± 47 kPa, p = 0.01).

CONCLUSIONS

Computational peak wall stress in thoracic aortic aneurysms was found to be strongly correlated with aneurysm expansion rate. Aneurysms requiring surgical intervention had significantly higher peak wall stresses. Peak wall stress may better predict clinical outcome than maximal aneurysmal diameter, and therefore may guide clinical decision-making.

摘要

背景

在美国,主动脉疾病(包括主动脉瘤)是第 12 大死亡原因。降胸主动脉瘤的发病率估计为每 10 万人年 10.4 例。越来越多的证据表明,源自主动脉几何结构的力学分析测量值比单纯的直径更能预测临床结果。

方法

回顾性地确定了 25 例接受胸主动脉瘤临床和放射学监测的患者。使用定制的 MATLAB 算法从 CT 血管造影扫描中提取主动脉壁和管腔内血栓的几何形状。使用有限元分析将产生的重建结构加压至 120mmHg。检查了峰值壁应力、动脉瘤生长和临床结果之间的关系。

结果

患者的平均年龄为 71.6±10.0 岁,平均随访时间为 17.5±9 个月(范围 6 至 43 个月)。初始动脉瘤直径的平均值为 47.8±8.0mm,最终直径为 52.1±10.0mm。平均动脉瘤增长率为 2.9±2.4mm/年。峰值壁应力与动脉瘤增长率之间的相关性更强(r=0.894),而最大主动脉直径与增长率之间的相关性较弱(r=0.531)。接受手术干预的动脉瘤的峰值壁应力高于继续监测的动脉瘤(300±75kPa 比 229±47kPa,p=0.01)。

结论

胸主动脉瘤的计算峰值壁应力与动脉瘤扩张率密切相关。需要手术干预的动脉瘤的峰值壁应力明显更高。峰值壁应力可能比最大动脉瘤直径更好地预测临床结果,因此可能指导临床决策。

相似文献

1
Peak wall stress predicts expansion rate in descending thoracic aortic aneurysms.
Ann Thorac Surg. 2013 Feb;95(2):593-8. doi: 10.1016/j.athoracsur.2012.10.025. Epub 2012 Dec 13.
2
Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.
Circulation. 2013 Sep 10;128(11 Suppl 1):S157-62. doi: 10.1161/CIRCULATIONAHA.112.000200.
3
Wall stress on ascending thoracic aortic aneurysms with bicuspid compared with tricuspid aortic valve.
J Thorac Cardiovasc Surg. 2018 Aug;156(2):492-500. doi: 10.1016/j.jtcvs.2018.03.004. Epub 2018 Mar 8.
4
Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth.
J Vasc Surg. 2015 Jan;61(1):217-23. doi: 10.1016/j.jvs.2013.08.032. Epub 2013 Oct 3.
5
Wall stress analyses in patients with ≥5 cm versus <5 cm ascending thoracic aortic aneurysm.
J Thorac Cardiovasc Surg. 2021 Nov;162(5):1452-1459. doi: 10.1016/j.jtcvs.2020.02.046. Epub 2020 Feb 19.
6
Increased wall stress of saccular versus fusiform aneurysms of the descending thoracic aorta.
Ann Vasc Surg. 2011 Nov;25(8):1129-37. doi: 10.1016/j.avsg.2011.07.008.
7
Association of diameter and wall stresses of tricuspid aortic valve ascending thoracic aortic aneurysms.
J Thorac Cardiovasc Surg. 2022 Nov;164(5):1365-1375. doi: 10.1016/j.jtcvs.2021.05.049. Epub 2021 Jun 30.
8
Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging.
Interact Cardiovasc Thorac Surg. 2015 Oct;21(4):471-80. doi: 10.1093/icvts/ivv186. Epub 2015 Jul 14.
9
Three-dimensional sensitivity assessment of thoracic aortic aneurysm wall stress: a probabilistic finite-element study.
Eur J Cardiothorac Surg. 2014 Mar;45(3):467-75. doi: 10.1093/ejcts/ezt400. Epub 2013 Aug 6.

引用本文的文献

1
Thoracic Aortic Aneurysm Growth Rates and Predicting Factors: A Systematic Review and Meta-Analysis.
J Am Heart Assoc. 2025 Apr;14(7):e038821. doi: 10.1161/JAHA.124.038821. Epub 2025 Mar 27.
2
2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association.
Circulation. 2025 Feb 25;151(8):e41-e660. doi: 10.1161/CIR.0000000000001303. Epub 2025 Jan 27.
3
The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study.
Cardiovasc Eng Technol. 2025 Feb;16(1):52-65. doi: 10.1007/s13239-024-00756-9. Epub 2024 Oct 25.
4
Baseline Diameter Does Not Predict Growth Rate in a Presurgical Ascending Thoracic Aortic Aneurysm Population.
J Am Heart Assoc. 2024 Oct 15;13(20):e036896. doi: 10.1161/JAHA.124.036896. Epub 2024 Oct 11.
5
Temporal evolution of ascending aortic aneurysm wall stress predicts all-cause mortality.
Interdiscip Cardiovasc Thorac Surg. 2024 Jul 3;39(1). doi: 10.1093/icvts/ivae116.
6
2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association.
Circulation. 2024 Feb 20;149(8):e347-e913. doi: 10.1161/CIR.0000000000001209. Epub 2024 Jan 24.
7
The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data.
Front Bioeng Biotechnol. 2023 Mar 30;11:1103905. doi: 10.3389/fbioe.2023.1103905. eCollection 2023.
8
Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association.
Circulation. 2023 Feb 21;147(8):e93-e621. doi: 10.1161/CIR.0000000000001123. Epub 2023 Jan 25.
9
Local aortic aneurysm wall expansion measured with automated image analysis.
JVS Vasc Sci. 2021 Dec 8;3:48-63. doi: 10.1016/j.jvssci.2021.11.004. eCollection 2022.
10
Engineering analysis of aortic wall stress and root dilatation in the V-shape surgery for treatment of ascending aortic aneurysms.
Interact Cardiovasc Thorac Surg. 2022 Jun 1;34(6):1124-1131. doi: 10.1093/icvts/ivac004.

本文引用的文献

1
Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T.
J Magn Reson Imaging. 2012 Nov;36(5):1097-103. doi: 10.1002/jmri.23735. Epub 2012 Jun 28.
2
Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.
Proc Inst Mech Eng H. 2012 Apr;226(4):288-304. doi: 10.1177/0954411911435592.
3
Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics.
Acta Biomater. 2012 Aug;8(8):3091-103. doi: 10.1016/j.actbio.2012.04.044. Epub 2012 May 11.
5
Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study.
Circulation. 2010 Nov 2;122(18):1815-22. doi: 10.1161/CIRCULATIONAHA.110.939819. Epub 2010 Oct 18.
8
Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):221-8. doi: 10.1007/978-3-642-15711-0_28.
9
Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms.
Biomech Model Mechanobiol. 2010 Oct;9(5):511-21. doi: 10.1007/s10237-010-0191-0. Epub 2010 Feb 9.
10
Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
Comput Methods Biomech Biomed Engin. 2008 Jun;11(3):301-22. doi: 10.1080/10255840701827412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验